Allakhverdiev SI, Kreslavski VD, Klimov VV et al., 2008. Heat stress: an overview of molecular responses in photosynthesis[J]. Photosynthesis Research, 98 (13): 541—550
Berry J, Bjorkman O, 1980. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 31 (1): 491—543
Bilger W, Schreiber U, Lange OL, 1987. Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo L[A]. // Tenhunen J, Catarino F, Lange O, Oechel W eds., Plant Response to Stress[M]. Springer Berlin Heidelberg, 15: 391—399
Blum A, 1988. Plant Breeding for Stress Environments[M]. Boca Ralon, Florida: CRC Press Inc.
Bressan RA, Zhang C, Zhang H et al., 2001. Learning from the Arabidopsis experience. The next gene search paradigm[J]. Plant Physiology, 127 (4): 1354—1360
Downs CA, Coleman JS, Heckathorn SA, 1999. The chloroplast 22Ku heatshock protein: A lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress[J]. Journal of Plant Physiology, 155 (45): 477—487
Fan L, Zheng S, Wang X, 1997. Antisense suppression of phospholipase D alpha retards abscisic acid and ethylenepromoted senescence of postharvest Arabidopsis leaves[J]. The Plant Cell, 9 (12): 2183—2196
Govindje E, 1995. Sixtythree years since kautsky: chlorophyll a fluorescence[J]. Functional Plant Biology, 22 (2): 131—160
Haldimann P, Feller U, 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heatdependent reduction of the activation state of ribulose1, 5bisphosphate carboxylase/oxygenase[J]. Plant Cell & Environment, 27 (9): 1169—1183
Hall AE, 2010. Crop Responses to Environment[M]. Boca Ralon, Florida: CRC Press LLC
Hendrickson L, Furbank R, Chow W, 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 82 (1): 73—81
Karim MA, Fracheboud Y, Stamp P, 1999. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves[J]. Physiologia Plantarum, 105 (4): 685—693
Koch MA, Kiefer C, Ehrich D et al., 2006. Three times out of asia minor: The phylogeography of Arabis alpina L. (Brassicaceae) [J]. Molecular Ecology, 15 (3): 825—839
Krner C, 2003. Alpine plant life[A]. Functional Plant Ecology of High Mountain Ecosystem[M]. Springer Verlag, New York, USA
Kramer DM, Johnson G, Kiirats O et al., 2004. New fluorescence parameters for the determination of Q(A) redox state and excitation energy fluxes[J]. Photosynthesis Research, 79 (2): 209—218
Krause GH, Weis E, 1991. Chlorophyll fluorescence and photosynthesisthe basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 42: 313—349
Mishra RK, Singhal GS, 1992. Function of photosynthetic apparatus of intact wheat leaves under high light and heatstress and its relationship with peroxidation of thylakoid lipids[J]. Plant Physiology, 98 (1): 1—6
Parsell DA, Lindquist S, 1993. The function of heatshock proteins in stress tolerancedegradation and reactivation of damaged proteins[J]. Annual Review of Genetics, 27: 437—496
Petkova V, Denev ID, Cholakov D et al., 2007. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters[J]. Scientia Horticulturae, 111 (2): 101—106
Petkova V, ID, D Stefanov, 2009. Resistance to high temperature stress of various bean (Phaseolus vulgaris L.) cultivars and lines[J]. General and Applied Plant Physiology, 35 (34): 117—121
Queitsch C, Hong SW, Vierling E et al., 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis[J]. The Plant Cell, 12 (4): 479—492
Schffl F, Prandl R, Reindl A, 1999. Molecular responses to heat stress[A]. // Shinozaki K, YamaguchiShinozaki K eds., Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants[M]. R. G. Landes Co., Austin, Texas, 81—98
Seemann JR, Berry JA, Downton WJS, 1984. Photosynthetic response and adaptation to hightemperature in desert plantsa comparison of gasexchange and fluorescence methods for studies of thermal tolerance[J]. Plant Physiology, 75 (2): 364—368
Sharkey TD, Zhang R, 2010. High temperature effects on electron and proton circuits of photosynthesis[J]. Journal of Integrative Plant Biology, 52 (8): 712—722
Song L, Chow WS, Sun L et al., 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming[J]. Journal of Experimental Botany, 61 (14): 4087—4096
Strasser B, 1997. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients[J].Photosynthesis Research, 52 (2): 147—155
Woo N, Badger M, Pogson B, 2008. A rapid, noninvasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence[J]. Plant Methods, 4 (1): 1—14
Yamada M, Hidaka T, Fukamachi H, 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence[J]. Scientia Horticulturae, 67 (12): 39—48
Zhang JX, Wang C, Yang CY et al., 2010. The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance[J]. The Plant Journal, 62: 539—548
Zheng G, Tian B, Zhang F et al., 2011. Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels[J]. Plant Cell & Environment, 34 (9): 1431—144 |