Anderson JM, Chow WS, 2002. Structural and functional dynamics of plant photosystem II[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 357: 1421—1430
Baker NR, 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 59: 89—113
Barth C, Krause HG, 2002. Study of tobacco transformants to assess the role of chloroplastic NAD (P) H dehydrogenase in photoprotection of photosystems I and II[J]. Planta, 216: 271—279
Bukhov NG, Wiese C, Neimanis S et al., 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport[J]. Photosynthesis Research, 59: 81—93
Ettinger WF, Clear AM, Fanning KJ et al., 1999. Identication of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane[J]. Plant Physiology, 119: 1379—1385
Genty B, Briantais JM, Baker NR, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 990: 87—92
Golding AJ, Johnson GN, 2003. Downregulation of linear and activation of cyclic electron transport during drought[J]. Planta, 218: 107—114
Hakala M, Tuominen I, Keranen M et al., 2005. Evidence for the role of the oxygenevolving manganese complex in photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta, 1706: 68—80
Havaux M, 1996. Shortterm responses of photosystem I to heat stress[J]. Photosynthesis Research, 47: 85—97
Hendrickson L, Furbank RT, Chow WS, 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 82: 73—81
Horvath EM, Peter SO, Joet T et al., 2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure[J]. Plant Physiology, 123: 1337—1349
Huang W, Zhang SB, Cao KF, 2011. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature[J]. Plant and Cell Physiology, 52: 297—305
Huang W, Yang SJ, Zhang SB et al., 2012. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 235: 819—828
Huang W, Fu PL, Jiang YJ et al., 2013. Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia submitted to a prolonged drought in a tropical limestone forest[J]. Tree Physiology, 33: 211—220
Inskeep WP, Bloom PR, 1985. Extinction coefficients of chlorophyll a and b in N, Ndimethylformamide and 80% acetone[J]. Plant Physiology, 77: 483—485
Johnson GN, 2005. Cyclic electron transport in C3 plants: fact or artifact[J]. Journal of Experimental Botany, 56: 407—416
Johnson GN, 2011. Physiology of PSI cyclic electron transport in higher plants[J]. Biochimica et Biophysica Acta, 1807: 384—389
Klüghammer C, Schreiber U, 1994. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+absorbance changes at 830nm[J]. Planta, 192: 261—268
Klüghammer C, Schreiber U, 2008. Saturation pulse method for assessment of energy conversion in PSI[J]. PAM Application Notes (PAN), 1: 11—14
Kim SJ, Lee CH, Hope AB et al., 2001. Inhibition of photosystem I and II and enhanced back flow of photosystem I electrons in cucumber leaf discs chilled in the light[J]. Plant and Cell Physiology, 42: 842—848
Kou JC, Takahashi S, Oguchi R et al., 2013. Estimation of the steadystate cyclic electron flux around PSI in spinach leaf discs in white light, CO2enriched air and other varied conditions[J]. Functional Plant Biology, 40: 1018—1028
Kramer DM, Johnson G, Kiirats O et al., 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 79: 209—218
Krieger A, Weis E, 1993. The role of calcium in the pHdependent control of Photosystem II[J]. Photosynthesis Research, 37: 117—130
Laureau C, De Paepe R, Latouche G et al., 2013. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L[J]. Plant, Cell and Environment, 36: 1296—1310
Li XG, Duan W, Meng QW et al., 2004. The function of chloroplastic NAD (P) H dehydrogenase in tobacco during chilling stress under low irradiance[J]. Plant and Cell Physiology, 45: 103—108
Long SP, Bernacchi CJ, 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 54: 2393—2401
Miyake C, 2010. Alternative electron flows (waterwater cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions[J]. Plant and Cell Physiology, 51: 1951—1963
Munekage Y, Hashimoto M, Miyake C et al., 2004. Cyclic electron ow around photosystem I is essential for photosynthesis[J]. Nature, 429: 579—582
Munekage Y, Hojo M, Meurer J et al., 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis[J]. Cell, 110: 361—371
Murata N, Takahashi S, Nishiyama Y et al., 2007. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et Biophysica Acta, 1767: 414—421
Nandha B, Finazzi G, Joliot P et al., 2007. The role of PGR5 in the redox poising of photosynthetic electron transport[J]. Biochimica et Biophysica Acta, 1767: 1252—1259
Nishiyama Y, Allakhverdiev SI, Murata N, 2011. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II[J]. Physiologia Plantarum, 142: 35—46
Nishiyama Y, Allakhverdiev SI, Yamamoto H et al., 2004. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803[J]. Biochemistry, 43: 11321—11330
Nishiyama Y, Yamamoto H, Allakhverdiev SI et al., 2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery[J]. EMBO Journal, 20: 5587—5594
Niyogi KK, Grossman AR, Bjorkman O, 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in regulation of photosynthetic energy conversion[J]. Plant Cell, 10: 1121—1134
Niyogi KK, Shih C, Chow WS et al., 2001. Photoprotection in a zeaxanthin and lutein deficient double mutant of Arabidopsis[J]. Photosynthesis Research, 67: 139—145
Oguchi R, Terashima I, Chow WS, 2009. The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants[J]. Plant and Cell Physiology, 50: 1815—1825
Oguchi R, Douwstra P, Fujita T et al., 2011. Intraleaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers[J]. New Phytologist, 191: 146—159
Ohnishi N, Allakhverdiev SI, Takahashi S et al., 2005. Twostep mechanism of photodamage to photosystem II: step one occurs at the oxygenevolving complex and step two occurs at the photochemical reaction center[J]. Biochemistry, 44: 8494—8499
Okegawa Y, Kagawa Y, Kobayashi Y et al., 2008. Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts[J]. Plant and Cell Physiology, 49: 825—834
Oxborough K, Baker NR, 1997. Resolving chlorophyll a fluorescence images of photosynthetic efciency into photochemical and nonphotochemical componentscalculation of qP and Fv′/Fm′ without measuring Fo′[J]. Photosynthesis Research, 54: 135—142
Peltier G, Cournac L, 2002. Chlororespiration[J]. Annual Review of Plant Biology, 53: 523—550
Shikanai T, 2007. Cyclic electron transport around photosystem I: genetic approaches[J]. Annual Review of Plant Biology, 58: 199—217
Shikanai T, Endo T, Hashimoto T et al., 1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I[J]. Proceedings of the National Academy of Sciences of the United States of America, 95: 9705—9709
Streb P, Josse EM, Gallout E et al., 2005. Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis[J]. Plant, Cell and Environment, 28: 1123—1135
Takahashi S, Bauwe H, Badger MR, 2007. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis[J]. Plant Physiology, 144: 487—494
Takahashi S, Murata N, 2008. How do environmental stresses accelerate photoinhibition[J]. Trends in Plant Science, 13: 178—182
Takahashi S, Milward SE, Fan DY et al., 2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis[J]. Plant Physiology, 149: 1560—1567
Takahashi S, Badger MR, 2011. Photoprotection in plants: a new light on photosystem II damage[J]. Trends in Plant Science, 16: 53—60
Teicher HB, Mller BL, Scheller HV, 2000. Photoinhibition of photosystem I in fieldgrown barley (Hordeum vulgare L.): induction, recovery and acclimation[J]. Photosynthesis Research, 64: 53—61
von Caemmerer S, Farquhar GD, 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 153: 376—387
Wang P, Duan W, Takabayashi A et al., 2006. Chloroplastic NAD (P) H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress[J]. Plant Physiology, 141: 465—474
Yamori W, Evans JR, von Caemmerer S, 2010. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves[J]. Plant, Cell and Environment, 33: 332—343
Yamori W, Sakata N, Suzuki Y et al., 2011. Cyclic electron flow around photosystem I via chloroplast NAD (P) H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice[J]. Plant Journal, 68: 966—976 |