Plant Diversity ›› 2019, Vol. 41 ›› Issue (05): 307-314.DOI: 10.1016/j.pld.2019.06.001
• Articles • Previous Articles Next Articles
Zhi-Li Zhoua,b, Yuan-Wen Duana, Yan Luoc, Yong-Ping Yanga, Zhi-Qiang Zhangd
Received:
2019-04-22
Revised:
2019-06-06
Online:
2019-10-25
Published:
2019-11-21
Contact:
Yong-Ping Yang,E-mail addresses:yangyp@mail.kib.ac.cn;Zhi-Qiang Zhang,E-mail addresses:zq.zhang@ynu.edu.cn.
Supported by:
Zhi-Li Zhou, Yuan-Wen Duan, Yan Luo, Yong-Ping Yang, Zhi-Qiang Zhang. Cell number explains the intraspecific spur-length variation in an Aquilegia species[J]. Plant Diversity, 2019, 41(05): 307-314.
Add to citation manager EndNote|Ris|BibTeX
坡向 Aspect | 密度 Density (株·m-2) | 高度 Height (cm) | 根冠比 Root-shoot ratio | 根深 Root depth (cm) | 比根长 Specific root length (cm·g-1) |
---|---|---|---|---|---|
南 South | 2 ± 0.08c | 15.60 ± 0.52c | 0.52 ± 0.02a | 16.92 ± 0.86c | 22.27 ± 1.34c |
西 West | 3 ± 0.12b | 19.26 ± 0.96b | 0.46 ± 0.03b | 29.35 ± 1.58b | 26.43 ± 1.56b |
东 East | 3 ± 0.11b | 18.42 ± 0.73b | 0.43 ± 0.02b | 31.28 ± 1.64b | 27.18 ± 1.38b |
北 North | 5 ± 0.21a | 23.85 ± 1.43a | 0.27 ± 0.01c | 47.76 ± 2.48a | 35.06 ± 1.40a |
Table 1 Growth characteristics of Reaumuria songarica along an aspect gradient (mean ± SE)
坡向 Aspect | 密度 Density (株·m-2) | 高度 Height (cm) | 根冠比 Root-shoot ratio | 根深 Root depth (cm) | 比根长 Specific root length (cm·g-1) |
---|---|---|---|---|---|
南 South | 2 ± 0.08c | 15.60 ± 0.52c | 0.52 ± 0.02a | 16.92 ± 0.86c | 22.27 ± 1.34c |
西 West | 3 ± 0.12b | 19.26 ± 0.96b | 0.46 ± 0.03b | 29.35 ± 1.58b | 26.43 ± 1.56b |
东 East | 3 ± 0.11b | 18.42 ± 0.73b | 0.43 ± 0.02b | 31.28 ± 1.64b | 27.18 ± 1.38b |
北 North | 5 ± 0.21a | 23.85 ± 1.43a | 0.27 ± 0.01c | 47.76 ± 2.48a | 35.06 ± 1.40a |
坡向 Aspect | 群落特征 Community properties | 土壤含水量 Soil moisture content (%) | ||||
---|---|---|---|---|---|---|
盖度 Coverage (%) | 密度 Density (株·m-2) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | ||
南 South | 18 ± 1.26c | 8 ± 0.33d | 19.00 ± 1.14c | 54.99 ± 4.07c | 38.69 ± 1.97c | 6.10 ± 0.43c |
西 West | 34 ± 1.70b | 15 ± 0.69c | 21.70 ± 1.08b | 75.81 ± 5.23b | 53.46 ± 2.87b | 7.60 ± 0.46b |
东 East | 36 ± 1.44b | 17 ± 0.77b | 21.32 ± 1.06b | 77.48 ± 5.39b | 54.87 ± 2.91b | 8.20 ± 0.33b |
北 North | 65 ± 2.60a | 25 ± 1.21a | 24.80 ± 0.99a | 91.75 ± 4.77a | 74.76 ± 3.88a | 11.50 ± 0.58a |
Table 2 The major characteristics of Reaumuria songarica in different aspects of slopes (mean ± SE)
坡向 Aspect | 群落特征 Community properties | 土壤含水量 Soil moisture content (%) | ||||
---|---|---|---|---|---|---|
盖度 Coverage (%) | 密度 Density (株·m-2) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | ||
南 South | 18 ± 1.26c | 8 ± 0.33d | 19.00 ± 1.14c | 54.99 ± 4.07c | 38.69 ± 1.97c | 6.10 ± 0.43c |
西 West | 34 ± 1.70b | 15 ± 0.69c | 21.70 ± 1.08b | 75.81 ± 5.23b | 53.46 ± 2.87b | 7.60 ± 0.46b |
东 East | 36 ± 1.44b | 17 ± 0.77b | 21.32 ± 1.06b | 77.48 ± 5.39b | 54.87 ± 2.91b | 8.20 ± 0.33b |
北 North | 65 ± 2.60a | 25 ± 1.21a | 24.80 ± 0.99a | 91.75 ± 4.77a | 74.76 ± 3.88a | 11.50 ± 0.58a |
坡向 Aspect | 单叶面积 Individual leaf area (mm2) | 枝长度 Twig length (cm) | 枝条数 Twig number |
---|---|---|---|
南 South | 0.66 ± 0.03c | 1.91 ± 0.06c | 7 ± 0.41c |
西 West | 0.87 ± 0.05b | 2.74 ± 0.15b | 10 ± 0.61b |
东 East | 0.90 ± 0.05b | 3.02 ± 0.17b | 11 ± 0.64b |
北 North | 1.14 ± 0.06a | 4.38 ± 0.24a | 16 ± 1.03a |
Table 3 Leaf and twig traits of Reaumuria songarica on different aspects (mean ± SE)
坡向 Aspect | 单叶面积 Individual leaf area (mm2) | 枝长度 Twig length (cm) | 枝条数 Twig number |
---|---|---|---|
南 South | 0.66 ± 0.03c | 1.91 ± 0.06c | 7 ± 0.41c |
西 West | 0.87 ± 0.05b | 2.74 ± 0.15b | 10 ± 0.61b |
东 East | 0.90 ± 0.05b | 3.02 ± 0.17b | 11 ± 0.64b |
北 North | 1.14 ± 0.06a | 4.38 ± 0.24a | 16 ± 1.03a |
1 | Bauhus J, Khanna PK, Menden N (2000). Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii.Canadian Journal of Forest Research, 30, 1886-1894. |
2 | Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain.Catena, 55, 341-365. |
3 | Chang XL, Lü SH, Feng ZY, Ye SX (2015). Impact of topography on the spatial distribution pattern of net primary productivity in a meadow.Acta Ecologica Sinica, 35, 3339-3348.(in Chinese with English abstract) [常学礼, 吕世海, 冯朝阳, 叶生星 (2015). 地形对草甸草原植被生产力分布格局的影响. 生态学报, 35, 3339-3348.] |
4 | Chen Y, Xu X, Zhang DR, Wei Y (2006). Correlations between vegetation distribution and topographical factors in the northwest of Longmen Mountain, Sichuan Province.Chinese Journal of Ecology, 25, 1052-1055.(in Chinese with English abstract) [陈瑶, 胥晓, 张德然, 魏勇 (2006). 四川龙门山西北部植被分布与地形因子的相关性. 生态学杂志, 25, 1052-1055.] |
5 | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum.Chinese Journal of Plant Ecology, 38, 1135-1153.(in Chinese with English abstract) [陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] |
6 | Dannowski M, Block A (2005). Fractal geometry and root system structures of heterogeneous plant communities.Plant and Soil, 272, 61-76. |
7 | Dong M (1996). Clonal growth in plants in relation to resource heterogeneity: Foraging behavior.Acta Botanica Sinica, 38, 828-835.(in Chinese with English abstract) [董鸣 (1996). 资源异质性环境中的植物克隆生长: 觅食行为. 植物学报, 38, 828-835.] |
8 | Druille M, Cabello MN, García Parisi PA, Golluscio RA, Omacini M (2015). Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands.Agriculture, Ecosystems and Environment, 202, 48-55. |
9 | Du JH, Liu AL, Dong YX, Hu MY, Liang J, Li W (2014). Architectural characteristics of roots in typical coastal psammophytes of South China.Chinese Journal of Plant Ecology, 38, 888-895.(in Chinese with English abstract) [杜建会, 刘安隆, 董玉祥, 胡绵友, 梁杰, 李薇 (2014). 华南海岸典型沙生植物根系构型特征. 植物生态学报,38, 888-895.] |
10 | Falster DS, Warton DI, Wright IJ (. |
11 | Glimskär A (2000). Estimates of root system topology of five plant species grown at steady-state nutrition.Plant and Soil, 227, 249-256. |
12 | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. |
13 | Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL (2014). Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland.Chinese Journal of Plant Ecology, 38, 281-288.(in Chinese with English abstract) [侯兆疆, 赵成章, 李钰, 张茜, 马小丽 (2014). 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系. 植物生态学报, 38, 281-288.] |
14 | Huang JJ (2013). Cloning Root System Distribution and Architecture of Populus euphratica in Ejina Oasis. Master degree dissertation, Beijing Forestry University, Beijing.(in Chinese with English abstract) [黄晶晶 (2013). 额济纳荒漠绿洲胡杨根系特征的研究. 硕士学位论文, 北京林业大学, 北京.] |
15 | Huang JJ, Jing JL, Cao DC, Zhang N, Li JW, Xia YG, Lü S (2013). Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis.Acta Ecologica Sinica, 33, 4331-4342.(in Chinese with English abstract) [黄晶晶, 井家林, 曹德昌, 张楠, 李景文, 夏延国, 吕爽 (2013). 不同林龄胡杨克隆繁殖根系分布特征及其构型. 生态学报, 33, 4331-4342.] |
16 | Ji WP, Wang JJ, Zhao XC, Lai LM, Wang YJ, Ma YJ, Zhao CQ, Zheng YR (2013). Fine root production and turnover of Alhagi sparsifolia community in arid area of Xinjiang, Northwest China.Chinese Journal of Ecology, 32, 2635-2640.(in Chinese with English abstract) [冀卫萍, 王健健, 赵学春, 来利明, 王永吉, 马远见, 赵春强, 郑元润 (2013). 干旱区骆驼刺群落细根生产与周转. 生态学杂志, 32, 2635-2640.] |
17 | Jiang LX, Li Y (2008). Comparison on architecture characteristics of root systems and leaf traits for three desert shrubs adapted to arid habitat.Journal of Desert Research, 28, 1118-1124.(in Chinese with English abstract) [蒋礼学, 李彦 (2008). 三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较. 中国沙漠, 28, 1118-1124.] |
18 | Kong XP, Zhang ML, de Smet I, Ding ZJ (2014). Designer crops: Optimal root system architecture for nutrient acquisition.Trends in Biotechnology, 32, 597-598. |
19 | Li XL, Hou XY, Wu XH, Sa RL, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe.Chinese Journal of Plant Ecology, 38, 440-451.(in Chinese with English abstract) [李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.] |
20 | Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX, Chai SY (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau.Science China: Life Sciences, 53, 1142-1151.[马维玲, 石培礼, 李文华, 何永涛, 张宪洲, 沈振西 (2010). 青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异. 中国科学: 生命科学, 40, 533-543.] |
21 | Ma XM, Xi L, Xiong SP, Yang J (2006). Dynamic changes of morphological parameters of tobacco root in field.Chinese Journal of Applied Ecology, 17, 373-376.(in Chinese with English abstract) [马新明, 席磊, 熊淑萍, 杨娟 (2006). 大田期烟草根系构型参数的动态变化. 应用生态学报, 17, 373-376.] |
22 | Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture.Plant, Cell & Environment, 28, 67-77. |
23 | Oppelt AL, Kurth W, Dzierzon H, Jentschke G, Godbold DL (2000). Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana.Annals of Forest Science, 57, 463-475. |
24 | Oppelt AL, Kurth W, Godbold DL (2001). Topology, scaling relations and Leonardo’s rule in root systems from African tree species.Tree Physiology, 21, 117-128. |
25 | Oppelt AL, Kurth W, Godbold DL (2005). Contrasting rooting patterns of some arid-zone fruit tree species from Botswana-II. Coarse root distribution.Agroforestry Systems, 64, 13-24. |
26 | Shan LS, Li Y, Dong QL, Geng DM (2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment.Journal of Desert Research, 32, 1283-1290.(in Chinese with English abstract) [单立山, 李毅, 董秋莲, 耿东梅 (2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283-1290.] |
27 | Shan LS, Li Y, Ren W, Su SP, Dong QL, Geng DM (2013). Root architecture of two desert plants in central Hexi Corridor of Northwest China.Chinese Journal of Applied Ecology, 24, 25-31.(in Chinese with English abstract) [单立山, 李毅, 任伟, 苏世平, 董秋莲, 耿东梅 (2013). 河西走廊中部两种荒漠植物根系构型特征. 应用生态学报, 24, 25-31.] |
28 | Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW (2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou.Chinese Journal of Plant Ecology, 39, 362-370.(in Chinese with English abstract) [史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.] |
29 | Sun HY, Li XK, Ren T, Cong RH, Lu JW (2014). Effects of fertilizer in shallow soils on growth and distribution of rice roots at seedling stage.Scientia Agricultura Sinica, 47, 2476-2484.(in Chinese with English abstract) [孙浩燕, 李小坤, 任涛, 丛日环, 鲁剑巍 (2014). 浅层施肥对水稻苗期根系生长及分布的影响. 中国农业科学,47, 2476-2484.] |
30 | Tang GA, Li FY, Liu XJ (2010). Tutorial of Digital Elevation Model. 2nd edn. Science Press, Beijing. 149.(in Chinese) [汤国安, 李发源, 刘学军 (2010). 数字高程模型教程. 第二版. 科学出版社, 北京. 149.] |
31 | Tracy SR, Black CR, Roberts JA, Dodd IC, Mooney SJ (2015). Using X-ray Computed Tomography to explore the role of abscisic acid in moderating the impact of soil compaction on root system architecture.Environmental and Experimental Botany, 110, 11-18. |
32 | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
33 | Xi HY, Feng Q, Si JH, Chang ZQ, Su YH, Guo R (2011). Spatio-temporal characteristics of soil in Ejina Oasis.Journal of Desert Research, 31, 68-75.(in Chinese with English abstract) [席海洋, 冯起, 司建华, 常宗强, 苏永红, 郭瑞 (2011). 额济纳绿洲不同植被覆盖下土壤特性的时空变化. 中国沙漠, 31, 68-75]. |
34 | Xiong DC, Huang JX, Yang ZJ, Lu ZL, Cheng GS, Yang YS (2012). Fine root architecture and morphology among different branch orders of six subtropical tree species.Acta Ecologica Sinica, 32, 1888-1897.(in Chinese with English abstract) [熊德成, 黄锦学, 杨智杰, 卢正立, 陈光水, 杨玉盛 (2012). 亚热带6种树种细根序级结构和形态特征. 生态学报, 32, 1888-1897.] |
35 | Yang XL, Zhang XM, Li YL, Li SC, Sun HL (2008). Analysis of root architecture and root adaptive strategy in the Taklimakan desert area of China. Journal of Plant Ecology (Chinese Version), 32, 1268-1276.(in Chinese with English abstract) [杨小林, 张希明, 李义玲, 李绍才, 孙海龙 (2008). 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略. 植物生态学报, 32, 1268-1276.] |
36 | Zeng FJ, Guo HF, Liu B, Zeng J, Xing WJ, Zhang XL (2010). Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. seedlings.Arid Land Geography, 33, 59-64.(in Chinese with English abstract) [曾凡江, 郭海峰. 刘波, 曾杰, 邢文娟, 张晓蕾 (2010). 多枝柽柳和疏叶骆驼刺幼苗生物量分配及根系分布特征. 干旱区地理, 33, 59-64.] |
37 | Zhang Q, Zhao CZ, Dong XG, Ma XL, Hou ZJ, Li Y (2014). Trade-off between the biomass and number of flowers in Stellera chamaejasme along an elevation gradient in a degraded alpine grassland.Chinese Journal of Plant Ecology, 38, 452-459.(in Chinese with English abstract) [张茜, 赵成章, 董小刚, 马小丽, 侯兆疆, 李钰 (2014). 高寒退化草地狼毒种群不同海拔花大小-数量的权衡关系. 植物生态学报, 38, 452-459.] |
38 | Zhao CZ, Sheng YP, Ren H, Gao FY, Zhang J (2013). A study on the root competitive pattern of annual pasture in mixed grassland in alpine region.Acta Ecologica Sinica, 33, 145-149. |
39 | Zhou YS, Wang LQ (2011). Ecological adaptation of root architecture to grassland degradation inPotentilla acaulis. Chinese Journal of Plant Ecology, 35, 490-499.(in Chinese with English abstract) [周艳松, 王立群 (2011). 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报, 35, 490-499.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||