[1] Battini, N., Giachetti, C.B., Castro, K.L., et al., 2021. Predator-prey interactions as key drivers for the invasion success of a potentially neurotoxic sea slug. Biol. Invasions 23, 1207-1229 [2] Bellard, C., Bernery, C., Leclerc, C., 2021. Looming extinctions due to invasive species:irreversible loss of ecological strategy and evolutionary history. Global Change Biol. 27, 4967-4979 [3] Bergmann, J., Weigelt, A., van Der Plas, F., et al., 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 [4] Bialic-Murphy, L., Smith, N.G., Voothuluru, P., et al., 2021. Invasion-induced root-fungal disruptions alter plant water and nitrogen economies. Ecol. Lett. 24, 1145-1156 [5] Bisseling, T., Geurts, R., 2020. Specificity in legume nodule symbiosis. Science 369, 620-621 [6] Bonfante, P., Genre, A., 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 [7] Brundrett, M.C., Tedersoo, L., 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108-1115 [8] Callaway, R.M., Ridenour, W.M., 2004. Novel weapons:invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436-443 [9] Chen, W.L., Koide, R.T., Adams, T.S., et al., 2016. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Sci. U.S.A. 113, 8741-8746 [10] Clausing, S., Pena, R., Song, B., et al., 2021. Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. New Phytol. 229, 2611-2624 [11] de Vries, J., Evers, J.B., Kuyper, T.W., et al., 2021. Mycorrhizal associations change root functionality:a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol. 231, 1171-1182 [12] Delaux, P.M., Schornack, S., 2021. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 371, eaba6605 [13] Delavaux, C.S., Smith-Ramesh, L.M., Kuebbing, S.E., 2017. Beyond nutrients:a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111-2119 [14] Dickie, I.A., Bufford, J.L., Cobb, R.C., et al., 2017. The emerging science of linked plant-fungal invasions. New Phytol. 215, 1314-1332 [15] Duchene, O., Vian, J.-F., Celette, F., 2017. Intercropping with legume for agroecological cropping systems:complementarity and facilitation processes and the importance of soil microorganisms. A review. Agr. Ecosyst. Environ. 240, 148-161 [16] Fabianska, I., Sosa-Lopez, E., Bucher, M., 2019. The role of nutrient balance in shaping plant root-fungal interactions:facts and speculation. Curr. Opin. Microbiol. 49, 90-96 [17] Feng, Y.L., Lei, Y.B., Wang, R.F., et al., 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc. Natl. Sci. U.S.A. 106, 1853-1856 [18] Freund, S.M., Soper, F.M., Poulson, S.R., et al., 2018. Actinorhizal species influence plant and soil nitrogen status of semiarid shrub-dominated ecosystems in the western Great Basin, U.S.A. J. Arid. Environ. 157, 48-56 [19] Gaggini, L., Rusterholz, H.P., Baur, B., 2018. The invasive plant Impatiens glandulifera affects soil fungal diversity and the bacterial community in forests. Appl. Soil. Ecol. 124, 335-343 [20] Grove, S., Haubensak, K.A., Gehring, C., et al., 2017. Mycorrhizae, invasions, and the temporal dynamics of mutualism disruption. J. Ecol. 105, 1496-1508 [21] Harkin, C., Stewart, A.J.A., 2021. Differential outcomes of novel plant-herbivore associations between an invading planthopper and native and invasive Spartina cordgrass species. Oecologia 195, 983-994 [22] He, X.X., Chen, Y.Q., Liu, S.J., et al., 2018. Cooperation of earthworm and arbuscular mycorrhizae enhanced plant N uptake by balancing absorption and supply of ammonia. Soil Biol. Biochem. 116, 351-359 [23] Jiang, Y.N., Wang, W.X., Xie, Q.J., et al., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175 [24] Jordan, N.R., Larson, D.L., Huerd, S.C., 2011. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species. Invas. Plant. Sci. Mana. 4, 11-21 [25] Kalisz, S., Kivlin, S.N., Bialic-Murphy, L., 2021. Allelopathy is pervasive in invasive plants. Biol. Invasions. 23, 367-371 [26] Kato-Noguchi, H., 2020. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants-Basel 9, 766 [27] Kohler, A., Kuo, A., Nagy, L.G., et al., 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410-415 [28] Kong, D., Fridley, J.D., 2019. Does plant biomass partitioning reflect energetic investments in carbon and nutrient foraging? Funct. Ecol. 33, 1627-1637 [29] Kong, D., Ma, C., Zhang, Q., et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863-872 [30] Lau, J.A., Schultheis, E.H., 2015. When two invasion hypotheses are better than one. New Phytol. 205, 958-960 [31] Lin, T.T., Vrieling, K., Laplanche, D., et al., 2021. Evolutionary changes in an invasive plant support the defensive role of plant volatiles. Curr. Biol. 31, 3450-+ [32] Liu, B.T., Li, H.B., Zhu, B.A., et al., 2015a. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 208, 125-136 [33] Liu, S.L., Luo, Y.M., Yang, R.J., et al., 2015b. High resource-capture and-use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants. Plant Physiol. Biochem. 96, 436-447 [34] Liu, Y.H., Xu, C., Li, Q.L., et al., 2020. Interference competition for mutualism between ant species mediates ant-mealybug associations. Insects. 11, 91 [35] Martin, F.M., Uroz, S., Barker, D.G., 2017. Ancestral alliances:plant mutualistic symbioses with fungi and bacteria. Science 356, eaad4501 [36] Meng, L.L., Srivastava, A.K., Kuca, K., et al., 2021. Interaction between earthworms and arbuscular mycorrhizal fungi in plants:a review. Phyton-Int. J. Exp. Bot. 90, 687-699 [37] Miao, Y., Wu, H.-F., Ma, C.-E., et al., 2014. Relationship between mycorrhizal fungi and functional traits in absorption roots:research progress and synthesis. Chin. J. Plant Ecol. 37, 1035-1042 [38] Nasto, M.K., Osborne, B.B., Lekberg, Y., et al., 2017. Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytol. 214, 1506-1517 [39] Ostonen, I., Truu, M., Helmisaari, H.S., et al., 2017. Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytol. 215, 977-991 [40] Pathak, R., Negi, V.S., Rawal, R.S., et al., 2019. Alien plant invasion in the Indian Himalayan Region:state of knowledge and research priorities. Biodivers. Conserv. 28, 3073-3102 [41] Png, G.K., Turner, B.L., Albornoz, F.E., et al., 2017. Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J. Ecol. 105, 1246-1255 [42] Pringle, A., Bever, J.D., Gardes, M., et al., 2009. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40, 699-715 [43] Pysek, P., Pergl, J., Essl, F., et al., 2017. Naturalized alien flora of the world:species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203-274 [44] Qiu, Y.P., Guo, L.J., Xu, X.Y., et al., 2021. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, eabe9256 [45] Reich, P.B., Tjoelker, M.G., Pregitzer, K.S., et al., 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793-801 [46] Rodriguez, J., Lorenzo, P., Gonzalez, L., 2021. Phenotypic plasticity of invasive Carpobrotus edulis modulates tolerance against herbivores. Biol. Invasions 23, 1859-1875 [47] Shi, S.M., Luo, X., Dong, X.S., et al., 2021. Arbuscular mycorrhization enhances nitrogen, phosphorus and potassium accumulation in Vicia faba by modulating soil nutrient balance under elevated CO2. J. Fungi. 7, 361 [48] Soper, F.M., Nasto, M.K., Osborne, B.B., et al., 2018. Nitrogen fixation and foliar nitrogen do not predict phosphorus acquisition strategies in tropical trees. J. Ecol. 107, 118-126 [49] Steidinger, B.S., Crowther, T.W., Liang, J., et al., 2019. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404-408 [50] Stinson, K.A., Campbell, S.A., Powell, J.R., et al., 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS. Biol. 4, e140 [51] Tang, J.-Q., Guo, X.-C., Lu X.-Y., et al., 2020. A review on the effects of invasive plants on mycorrhizal fungi of native plants and their underlying mechanisms. Chin. J. Plant Ecol. 44, 1095-1112 [52] Tao, K., Kelly, S., Radutoiu, S., 2019. Microbial associations enabling nitrogen acquisition in plants. Curr. Opin. Microbiol. 49, 83-89 [53] Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 [54] Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V., 1986. Physiological and genetical aspects of mycorrhizae:proceedings of the 1st european symposium on mycorrhizae. In:Gianinazzi, S., Gianinazzi-Pearson, V.(Eds.), European symposium on mycorrhizae, INRA Press, Paris, pp. 217-221 [55] Van Kleunen, M., Dawson, W., Essl, F., et al., 2015. Global exchange and accumulation of non-native plants. Nature 525, 100-103 [56] Vogelsang, K.M., Bever, J.D., 2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90, 399-407 [57] Wang, Y., He, X., Yu, F., 2021. Non-host plants:are they mycorrhizal networks players? Plant Divers. DOI:10.1016/j.pld.2021.06.005 [58] Wilson, G.W., Hickman, K.R., Williamson, M.M., 2012. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza 22, 327-336 [59] Yu, H.W., He, W.M., 2021. Arbuscular mycorrhizal fungi compete asymmetrically for amino acids with native and invasive Solidago. Microbial Ecol. DOI:10.1007/s00248-021-01841-5 [60] Zhu, X.Z., Yi, Y.M., Huang, L., et al., 2021. Metabolomics reveals the allelopathic potential of the invasive plant Eupatorium adenophorum. Plants-Basel 10, 1473 |