Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 492-498.DOI: 10.1016/j.pld.2021.11.006
• Research paper • Previous Articles Next Articles
Romina Vidal-Russella, Mariana Tadeya, Romana Urfusováb, Tomáš Urfusb, Cintia Paola Soutoa
Received:
2021-05-10
Revised:
2021-11-18
Online:
2022-09-25
Published:
2022-10-14
Supported by:
Romina Vidal-Russell, Mariana Tadey, Romana Urfusová, Tomáš Urfus, Cintia Paola Souto. Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America[J]. Plant Diversity, 2022, 44(05): 492-498.
Add to citation manager EndNote|Ris|BibTeX
[1] Barbour, M. G. 1969. Patterns of genetic similarity between Larrea divaricata of North and South America. Amer. Midland Natur. 81, 54-67 [2] Bennett, M. D. 1987. Variation in genomic form in plants and its ecological implications. New phytol. 106, 177-200 [3] Bottini, M., Greizerstein, E., Aulicino, M. B., et al., 2000. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L.(Berberidaceae). Ann. Bot. 86, 565-573 [4] Bromham, L., Hua, X., Lanfear, R., et al., 2015. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 185, 507-524 [5] Burnham, R. J., Graham, A. 1999. The history of neotropical vegetation:new developments and status. Ann. Mo. Bot. Gard. 86, 546-589 [6] Comai, L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836-846 [7] Davies, T. J., Savolainen, V., Chase, M. W., et al. 2004. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. Lond., B, Biol. Sci. 271, 2195-2200 [8] De Bodt, S., Maere, S. Van de Peer, Y. 2005. Genome duplication and the origin of angiosperms. Trends Eco. Evol. 20, 591-597 [9] Dolezel, J., Greilhuber, J. Suda, J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233 [10] Ezcurra, E., Montana, C. Arizaga, S. 1991. Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina. Ecology 72, 23-34 [11] Flenley, J. R. 2011. Ultraviolet insolation and the tropical rainforest:Altitudinal variations, Quaternary and recent change, extinctions, and the evolution of biodiversity. in:F. J. Bush M., Gosling W., Tropical Rainforest Responses to Climatic Change, Berlin, Heidelberg, pp. 241-258 [12] Goldie, X., Gillman, L., Crisp, M., et al. 2010. Evolutionary speed limited by water in arid Australia. Proc. R. Soc. Lond., B, Biol. Sci. 277, 2645-2653 [13] Grime, J. Mowforth, M. 1982. Variation in genome size-an ecological interpretation. Nature 299, 151-153 [14] Hamann, A., Wang, T., Spittlehouse, D. L., et al. 2013. A comprehensive, high-resolution database of historical and projected climate surfaces for western North America. BAMS 94, 1307-1309 [15] Hawkins, B. A., Field, R., Cornell, H. V., et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105-3117 [16] Hijmans, R., Cameron, S., Parra, J., et al. 2005. WorldClim, version 1.3. University of California, Berkeley [17] Hunziker, J., Palacios, R., De Valesi, A. G., et al. 1972. Species disjunctions in Larrea:evidence from morphology, cytogenetics, phenolic compounds, and seed albumins. Ann. Mo. Bot. Gard. 59, 224-233 [18] Hunziker, J. H. Comas, C. 2002. Larrea interspecific hybrids revisited (Zygophyllaceae). Darwiniana 40, 33-38 [19] Landis, J. B., Soltis, D. E., Li, Z., et al. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348-363 [20] Laport, R. G., Hatem, L., Minckley, R. L., et al. 2013. Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. J. Torrey Bot. Soc. 140, 349-363 [21] Laport, R. G., Minckley, R. L. Ramsey, J. 2012. Phylogeny and cytogeography of the North American creosote bush (Larrea tridentata, Zygophyllaceae). Syst. Bot. 37, 153-164 [22] Laport, R. G., Ng, J. 2017. Out of one, many:The biodiversity considerations of polyploidy. Am. J. Bot. 104, 1119-1121 [23] Laport, R. G., Ramsey, J. 2015. Morphometric analysis of the North American creosote bush (Larrea tridentata, Zygophyllaceae) and the microspatial distribution of its chromosome races. Plant Syst. Evol. 301, 1581-1599 [24] Leong-Skornickova, J., Sida, O., Jarolimova, V., et al. 2007. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann. Bot. 100, 505-526 [25] Lia, V. V., Confalonieri, V. A., Comas, C. I., et al. 2001. Molecular phylogeny of Larrea and its allies (Zygophyllaceae):reticulate evolution and the probable time of creosote bush arrival to North America. Mol. Phylo. Evol. 21, 309-320 [26] Maceira, N. O., Jacquard, P., Lumaret, R. 1993. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol. 124, 321-328 [27] Ohri, D., Kumar, A. Pal, M. 1986. Correlations between 2C DNA values and habit in Cassia (Leguminosae:Caesalpinioideae). Plant Syst. Evol. 153, 223-227 [28] Paruelo, J. M., Beltran, A., Jobbagy, E., et al., 1998. The climate of Patagonia:general patterns and controls on biotic processes. Ecologia austral 8, 085-101 [29] Petit, C. Thompson, J. D. 1999. Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol. Ecol. 13, 45-65 [30] Poggio, L. Naranjo, C. 1990. Contenido de ADN y evolucion en plantas superiores. Academia Nacional Ciencias Exactas Fisicas y Naturales, Buenos Aires, Argentina, Monografia 5, 27-37 [31] Poggio, L., Realini, M. F., Fourastie, M. F., et al. 2014. Genome downsizing and karyotype constancy in diploid and polyploid congeners:a model of genome size variation. AoB Plant 6, plu029 [32] Poggio, L., Rosato, M., Chiavarino, A. M., et al. 1998. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann. Bot. 82, 107-115 [33] Price, H. J. 1988. DNA content variation among higher plants. Ann. Mo. Bot. Gard. 75, 1248-1257 [34] Raven, P. H. 1972. Plant species disjunctions:a summary. Ann. Mo. Bot. Gard. 59, 234-246 [35] Rice, A., Smarda, P., Novosolov, M., et al., 2019. The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265-273 [36] Rohde, K. 1992. Latitudinal Gradients in Species Diversity:The Search for the Primary Cause. Oikos 65, 514-527 [37] Roig, F., Roig-Junent, S. Corbalan, V. 2009. Biogeography of the Monte desert. J. Arid Environ. 73, 164-172 [38] Schonswetter, P., Suda, J., Popp, M., et al., 2007. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 42, 92-103 [39] Severns, P. M. Liston, A. 2008. Intraspecific chromosome number variation:a neglected threat to the conservation of rare plants. Conserv. Biol. 22, 1641-1647 [40] Soltis, D. E., Albert, V. A., Leebens Mack, J., et al., 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336-348 [41] Soltis, D. E., Buggs, R. J., Doyle, J. J., et al., 2010. What we still don't know about polyploidy. Taxon 59, 1387-1403 [42] Soltis, D. E., Soltis, P. S., Schemske, D. W., et al., 2007. Autopolyploidy in angiosperms:have we grossly underestimated the number of species? Taxon 56, 13-30 [43] Soltis, P. S., Soltis, D. E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051-7057 [44] Soltis, P. S., Soltis, D. E. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159-165 [45] Stebbins, G. L. 1985. Polyploidy, hybridization, and the invasion of new habitats. Ann. Mo. Bot. Gard. 72, 824-832 [46] Tank, D. C., Eastman, J. M., Pennell, M. W., et al., 2015. Nested radiations and the pulse of angiosperm diversification:increased diversification rates often follow whole genome duplications. New Phytol. 207, 454-467 [47] Te Beest, M., Le Roux, J. J., Richardson, D. M., et al., 2012. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19-45 [48] Temsch, E. M., Temsch, W., Ehrendorfer-Schratt, L., et al., 2010. Heavy metal pollution, selection, and genome size:The Species of the Zerjav Study Revisited with Flow Cytometry. J. Bot. 1-11 [49] Wang, T., Hamann, A., Spittlehouse, D., et al., 2016. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 [50] Willis, K. J., Bennett, K. D. Birks, H. J. B. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36, 1630-1644 [51] Yang, T. W. 1970. Major chromosome races of Larrea divaricata in North America. J. Ariz. Acad. Sci. 6, 41-45 [52] Zhang, K., Wang, X. Cheng, F. 2019. Plant polyploidy:Origin, evolution, and its influence on crop domestication. Hortic. Plant J. 5, 231-239 |
[1] | Fa-Guo Wang, Ai-Hua Wang, Cheng-Ke Bai, Dong-Mei Jin, Li-Yun Nie, AJ Harris, Le Che, Juan-Juan Wang, Shi-Yu Li, Lei Xu, Hui Shen, Yu-Feng Gu, Hui Shang, Lei Duan, Xian-Chun Zhang, Hong-Feng Chen, Yue-Hong Yan. Genome size evolution of the extant lycophytes and ferns [J]. Plant Diversity, 2022, 44(02): 141-152. |
[2] | Guangyan Wang a, b, Yongping Yang b, *. The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size [J]. Plant Diversity, 2016, 38(04): 190-193. |
[3] | YE Lin-Jiang- , ZHANG Zhi-Rong-, SUN Zhi-Xia-, TIAN Shuang. The Determination of Nuclear DNA Content (2Cvalue) on Some Representative Genus and Species of Magnoliaceae [J]. Plant Diversity, 2015, 37(05): 605-610. |
[4] | ZHANG Ning-Ning, YANG Jing, SUN Wei-Bang. Genome Size Estimation of Viburnum (Adoxaceae) Species by Using Flow Cytometry* [J]. Plant Diversity, 2014, 36(06): 730-736. |
[5] | ZHANG Yi-Chi, LI Xia, GUO Zhen-Hua. The Effects of Preservation Methods and Storage Time on Estimating the Nuclear DNA Content (2C-value) of Bamboos [J]. Plant Diversity, 2014, 36(02): 227-232. |
[6] | ZHANG Fa-Qi-, FU Peng-Cheng-, GAO Qing-Bo-, LI Yi-Hu-, Gulzar Khan, CHEN Shi-Long. Comparative Study on Plant Seed Morphological Characteristics of Zygophyllaceae and Two New Families Separated from It [J]. Plant Diversity, 2013, 35(3): 280-284. |
[7] | LIN Mei-Zhen , DENG Hua , WEI Dong-Mei , TIAN Hui-Qiao. Change of DNA Content in Male and Female Gametes of Tobacco ( Nicotiana tabacum) [J]. Plant Diversity, 2009, 31(04): 303-308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||