Plant Diversity ›› 2023, Vol. 45 ›› Issue (01): 80-97.DOI: 10.1016/j.pld.2022.01.001
• Articles • Previous Articles Next Articles
Sanchita Kumara, Taposhi Hazraa, Robert A. Spicerb,c, Manoshi Hazraa, Teresa E. V. Spicerb, Subir Berad, Mahasin Ali Khana
Received:
2021-10-21
Revised:
2022-01-05
Published:
2023-02-23
Contact:
Mahasin Ali Khan,E-mail:khan.mahasinali@gmail.com
Supported by:
Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains[J]. Plant Diversity, 2023, 45(01): 80-97.
Add to citation manager EndNote|Ris|BibTeX
[1] Ali, J. R., and J. C. Aitchison. 2005. Greater India. Earth-Sci. Rev. 72, 169-188 [2] Ambwani, K., 1981. Borassoid fossil palm root from the Deccan Intertrappean beds of Nawargaon in Wardha District, Maharashtra. Geophytology 11, 13-15 [3] Ambwani, K., 1983. Palmoxylon shahpuraensis sp. nov., a fossil palm resembling Licuala from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh. Palaeobotanist 31, 52-59 [4] Ambwani, K., Mehrotra, R.C., 1989. A new fossil palm wood from the Deccan Intertrappean bed of Shahpura, Mandla District, Madhya Pradesh. Geophytology 19, 70-75 [5] Archibald, S.B., Morse, G.E., Greenwood, D.R., et al., 2014. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum. Proc. Natl. Acad. Sci. U.S.A. 111, 8095-8100 [6] Asmussen, C.B., Baker, W.J., Dransfield, J. 2000. Phylogeny of the palm family (Arecaceae) based on rps16 intron and trnL-trnF plastid DNA sequences.[in] K.L. Wilson and D.A. Morrison (eds), Monocots:systematics and evolution. Melbourne (Australia), CSIRO, 525-535 [7] Asmussen, C.B., Dransfield, J., Deickmann, et al., 2006. A new subfamily classification of the palm family (Arecaceae):evidence from plastid DNA phylogeny. Bot. J. Linn. Soc. 151, 15-38 [8] Awasthi, N., Mehrotra, R.C., Khare, E.G., 1996a. A borassoid palm root from the Deccan Intertrappean beds of Wardha district. Maharashtra with critical remarks on fossil roots of Eichhornia 57-61 [9] Awasthi, N., Mehrotra, R.C., Srivastava, R., 1996b. Fossil woods from the Deccan Intertrappean beds of Madhya Pradesh. Geophytology 25, 113-118 [10] Baker, W.J., Couvreur, T.L.P., 2013a. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J. Biogeogr. 40, 274-285 [11] Baker, W.J., Couvreur, T.L.P., 2013b. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J. Biogeogr. 40, 286-298 [12] Baker, W.J., Dransfield, J., 2016. Beyond Genera Palmarum:progress and prospects in palm systematics. Bot. J. Linn. Soc.182, 207-233 [13] Bande, M.B., Prakash, U., Ambwani, K., 1982. A fossil palm fruit Hyphaeneocarpon indicum gen. et sp. nov. from the Deccan Intertrappean Series, India. Palaeobotanist 30, 303-309 [14] Baas, P., Manchester, S. R., et al., 2017. Fossil wood with dimorphic fibers from the Deccan Intertrappean Beds of India-The oldest fossil Connaraceae? IAWA J. 38, 124-133 [15] Berry, E.W., 1905. A palm from the mid-Cretaceous. Torreya 5, 30-33 [16] Berry, E. W. 1911. Contributions to the Mesozoic flora of the Atlantic coastal plain, VII. Bull. Torrey Bot. Club. 38, 399-424 [17] Berry, E.W., 1914. The upper cretaceous and Eocene floras of South Carolina and Georgia. US Geol. Sur. Prof. Paper, 84, 1-200 [18] Berry, E.W., 1917. The fossil plants from Vero, Florida. J. Geol. 25, 661-666 [19] Berry, E.W., 1924. Fossil plants and Unios in the Red Beds of Wyoming. J. Geol. 32, 488-497 [20] Bhatia, H., Khan, M.A., Srivastava, G., et al., 2021. Late Cretaceous-Paleogene Indian monsoon climate vis-a-vis movement of the Indian plate, and the birth of the South Asian Monsoon. Gondwana Res. 93, 89-100 [21] Birader, N.V., Bonde, S.D., 1979. On a fossil palm peduncle from Dongargaon District Chandrapur, Maharashtra, India. Geophytology 9,132-138 [22] Bonde, S.D., 1986. Sabalophyllum livistonoides gen. et sp. nov.:a petrified palm leaf segment from Deccan Intertrappean bed at Nawargaon, District Wardha, Maharashtra, India. Biovigyanam 12, 113-118 [23] Bonde, S.D., Chate, S.V., Gamre, P.G., et al., 2008. A dichotomously branched fossil palm stem from the Deccan Intertrappean beds of India. Curr. Sci. 94, 182-183 [24] Bonde, S.D., Kumbhojkar, M.S., Aher, R.T., 2000. Phoenicicaulon mahabalei gen. et sp. nov., a sheathing leaf base of Phoenix from the Deccan Intertrappean beds of India. Geophytology 29, 11-16 [25] Bjorholm, S., Svenning, J.C., Baker, W.J., et al., 2006. Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Bot. J. Linn. Soc. 151, 113-125 [26] Bouilhol, P., Jagoutz, O., Hanchar, J. M., et al., 2013. Dating the India-Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 63-175 [27] Briggs, J. C., 2003. The biogeographic and tectonic history of India. J. Biogeogr. 30, 381-388 [28] Brown, R.W., 1962. Paleocene flora of the Rocky Mountains and Great Plains (Vol. 375). Washington:US Government Printing Office [29] Chatterjee, S., and C. Scotese. 2010. The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period., in new aspects of Mesozoic biodiversity. Springer, Berlin, Heidelberg, 105-126 [30] Chenet, A.L., Quidelleur, X., Fluteau et al., 2007. 40K-40Ar dating of the Main Deccan large igneous province:Further evidence of KTB age and short duration. Earth Planet. Sci. Lett. 263, 1-15 [31] Chenet, A.L., Courtillot, V., Fluteau, F., et al., 2009. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation:2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. J. Geophys. Res. 114, B06103 [32] Couvreur, T. L. P., Forest, F., Baker, W. J., 2011 Origin and global diversification patterns of tropical rain forests:inferences from a complete genus-level of palms. BMC Biol. 9, 12 [33] Daghlian, C.P., 1978. Coryphoid palms from the lower and middle Eocene of south-eastern North America. Palaeontogra Abt B. 166, 44-82 [34] Ding, L., Spicer, R.A., Yang, J., et al., 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45, 215-218 [35] Dransfield, J., Uhl, N.W., Asmussen, C.B., et al., 2008. Genera Palmarum:The Evolution and Classification of Palms. Royal Botanic Gardens. Kew, Kew Publishing [36] Endo, S., 1934. The geological age of the Fushun Group, South Manchuria. Proc. Imperial Acad. Sci. 10, 486-489 [37] Fang, X., Dupont-Nivet, G., Wang, C., et al., 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Sci. Adv. 6, eaba7298 [38] Gayakwad, B.B., Patil, G., 1989. On two palm woods from the Deccan Inter-trappean beds of Betul District, Madhya Pradesh.[in:] N.V. Biradar (ed), Proceedings of the special Indian Geophytological Conference, Pune 1986. University of Poona, Pune, 31-38 [39] Govaerts, R., Dransfield, J. 2005. World Checklist of Palms:The Board of Trustees of the Royal Botanic Gardens, Kew, 1-223 [40] Greenwood, D.R., Conran, J.G., 2020. Fossil coryphoid palms from the Eocene of Vancouver, British Columbia. Int. J. Plant Sci.181, 224-240 [41] Greenwood, D.R., West, C.K., 2017. A fossil coryphoid palm from the Paleocene of western Canada. Rev. Palaeobot. Palynol. 239, 55-65 [42] Greenwood, D.R., Wing, S.L., 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23, 1044-1048 [43] Guo, S.X., 1965. On the discovery of fossil palms from the Tertiary Formation of Kwangtung and Kuangsi. Acta. Palaeontol. Sin. 13, 598-605 (in Chinese) [44] Harley, M.M., 2006. A summary of fossil records for Arecaceae. Bot. J. Linn. Soc. 151, 39-67 [45] Hofmann, C., Feraud, G., Courtillot, V., 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile:further constraints on duration and age of the Deccan traps. Earth Planet. Sci. Lett.180, 13-27 [46] Kapgate, D. K., Manchester, S. R., Stuppy, W. 2017. Oldest fruit of Phyllanthaceae from the Deccan Inter-trappean beds of Singpur, Madhya Pradesh, India. Acta Palaeobot. 57, 33-38 [47] Karanth, P. K., 2006. Out-of-India Gondwanan origin of some tropical Asian biota. Curr. Sci. 90, 789-792 [48] Keller, G., Adatte, T., Bajpai, S., et al., 2009. K-T transition in Deccan Traps of central India marks major marine Seaway across India. Earth Planet. Sci. Lett. 282, 10-23 [49] Khan, M.A., Mandal, K., Bera, S., 2019. A new species of permineralized palm stem from the Maastrichtian-Danian sediments of Central India and its palaeoclimatic signal. Bot. Lett. 166,189-206 [50] Khan, M.A., Roy, K., Hazra, T., et al., 2020a. A new coryphoid palm from the Maastrichtian-Danian Sediments of Madhya Pradesh and its Palaeoenvironmental Implications. J. Geol. Soc. India. 95, 75-83 [51] Khan, M.A., Hazra, M., Mahato, S., et al., 2020b. A Cretaceous Gondwana origin of the wax palm subfamily (Ceroxyloideae:Arecaceae) and its paleobiogeographic context. Rev. Palaeobot. Palynol. 283, 104318 [52] Khosla, S.C., 1999. Costabuntonia, a new genus of Ostracoda from the Inter-trappean beds (Paleocene) of east coast of India. Micropaleontol. 45, 319-324 [53] Khosla, A., Verma, O., 2015. Paleobiota from the Deccan volcano-sedimentary sequences of India:paleoenvironments, age and paleobiogeographic implications. Hist. Biol. 27, 898-914 [54] Knowlton, F.H., 1917. Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. US Geol. Surv. Prof. Paper 101, 323-455 [55] Kulkarni, A.R., Patil, K.S., 1977. Palmocaulon costapalmatum, a petrified palm leaf axis from the Deccan Inter-trappean beds of Wardha District, Maharashtra. Geophytology 7, 208-213 [56] Kvacek, J., Herman, A.B., 2004. Monocotyledons from the early Campanian (Cretaceous) of Grunbach, lower Austria. Rev. Palaeobot. Palynol. 128, 323-353 [57] Lakhanpal, R.N., Prakash, U., Ambwani K., 1979. Two petrified palm woods from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh. Paleobotanist 26, 119-129 [58] Lakhanpal, R.N., Sah, S.C.D., Sharma, K.K., et al., 1983. Occurrence of Livistona in the Hemis conglomerate horizon of Ladakh. Geology of Indus suture zone of Ladakh, Wadia Institute of Himalayan Geology Dehradun, 179-185 [59] Lakhanpal, R.N., Thussu, J., Guleria, J.S., 1984. A fossil fan palm from the Liyan Formation of Ladakh (Jammu and Kashmir). Paleobotanist 31, 201-207 [60] Lesquereux, L., 1878. Contributions to the Fossil Flora of the Western Territories. (Vol. 7). US Government Printing Office [61] Mahabale, T.S., 1958. Resolution of the artificial palm genus, Palmoxylon:A new approach. Palaeobotanist 7, 76-84 [62] Mahabale, T.S., 1966. Evolutionary trends in the palmae with special reference to fossil palms. Palaeobotanist 14, 214-222 [63] Manchester, S.R., Bonde, S.D., Nipunage, D.S., et al., 2016. Trilocular palm fruits from the Deccan Inter-trappean Beds of India. Int. J. Plant Sci. 177, 633-641 [64] Manchester, S.R., Lehman, T.M., Wheeler, E.A., 2010. Fossil palms (Arecaceae, Coryphoideae) associated with juvenile herbivorous dinosaurs in the upper Cretaceous Aguja formation, Big Bend National Park, Texas. Int. J. Plant Sci. 171, 679-689 [65] Mander, L., Punyasena, S.W., 2014 On the taxonomic resolution of pollen and spore records of Earth's vegetation. Int. J. Plant Sci. 175, 931-945 [66] Marmi, J., Gomez, B., Martin-Closas, C., et al., 2010. A reconstruction of the fossil palm Sabalites longirhachis (Unger) J. Kvacek et Herman from the Maastrichtian of Pyrenees. Rev. Palaeobot. Palynol. 163, 73-83 [67] Mathur, A.K., Mishra, V.P., Mehra, S., 1996. Significance of tephra at Dagshai kasauli and lower upper Dharamsala formational contacts, Himachal Pradesh. Visesa Prakasana-Bharatiya Bhuvaijnanika Sarveksana, 21, 29-32 [68] Matsunaga, K.K., Manchester, S.R., Srivastava, R., et al., 2019. Fossil palm fruits from India indicate a Cretaceous origin of Arecaceae tribe Borasseae. Bot. J. Linn. Soc. 190, 260-280 [69] Matsunaga, K.K., Smith, S.Y., 2021. Fossil palm reading:using fruits to reveal the deep roots of palm diversity. Am. J. Bot. 108, 472-494 [70] Mustoe, G. E., Gannaway, W. L., 1995. Palm fossils from northwest Washington. Washington Geol. 23, 21-26 [71] Nair, K.K.K., Bhusari, B., 2001. Stratigraphy of Deccan Traps:A Review Geol. Surv. India Spec. Publ. 64, 477-492 [72] Newberry, J.S., 1898. The later extinct floras of North America (Vol. 35). US Government Printing Office [73] Oyama, T., Matsuo, H., 1964. Notes on Palmaean leaf from the Oarai flora (Upper Cretaceous), Oarai Machi, Ibaraki Prefecture, Japan. Trans. Proc. Palaeont. Soc. Japan, N. S., 55, 241-246 [74] Pan, A.D., Jacobs, B.F., Dransfield, J., et al., 2006. The fossil history of palms (Arecaeae) in Africa and new records from the Late Oligocene (28-27 My) of north-western Ethiopia. Bot. J. Linn. Soc. 151, 69-81 [75] Pathak, V., Patil, S.K., Shrivastava, J.P., 2017. Tectonomagmatic setting of lava packages in the Mandla lobe of the eastern Deccan volcanic province, India:palaeomagnetism and magnetostratigraphic evidence. Geological Society, London, Special Publications, 445, 69-94 [76] Patil, S.P., Zilpe, S.K., Kapgate, D.K., 2016. Report of a palm fruit from the Deccan Inter-trappean series of Maraipatan, Chandrapur District (ms). Int. J. Res. Biosci. Agri. Technol. special issue, 166-170 [77] Prakash, U., Ambwani, K., 1980. A petrified Livistona-like palm stem, Palmoxylon livistonoides sp. nov. from the Deccan Inter-trappean beds of India. Palaeobotanist 26, 297-306 [78] Prasad, M., Khare, E.G., Singh, S.K., 2013. Plant fossils from the Deccan Inter-trappean sediments of Chhindwara district, Madhya Pradesh, India:their palaeoclimatic significance. J. Palaeontol. Soc. India 58, 229-240 [79] Prebble, M., and Dowe, J. L., 2008. The late Quaternary decline and extinction of palms on oceanic Pacific islands. Quat. Sci. Rev. 27, 2546-2567 [80] Read, R.W., Hickey, L.J., 1972. A revised classification of fossil palm and palm-like leaves. Taxon 21, 129-137 [81] Reichgelt, T., West, C.K., Greenwood, D.R., 2018. The relation between global palm distribution and climate. Sci. Rep. 8, 4721 [82] Renne, P.R., Sprain, C.J., Richards, M.A., et al., 2015. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350, 76-78 [83] Rousseau, D.D., Schevin, P., Ferrier, J., et al., 2008. Long-distance pollen transport from North America to Greenland in spring. J. Geophys. Res. 113, G02013 [84] Roy, K., Hazra, T., Hazra, M., et al., 2021. A new coryphoid costapalmate palm leaf from the Maastrichtian-Danian of India. Bot. Lett. 168, 155-166 [85] Roy, S., 2013. On the occurrence of Palmoxylon coronatum Sahni resembling Borassus Linn. from the Tertiary of West Bengal, India. Ameghiniana 17, 130-134 [86] Sahni, B., 1964. Revision of Indian fossil plants III, Monocotyledons. Lucknow:BSIP 1-89. Monograph No. I [87] Saporta, G., 1865. Etudes sur la vegetation du sud-est de la France a lepoque tertiare. Ann. Sci. Nat. Bot. 5, 81-84 [88] Schoene, B., Samperton, K.M., Eddy, M.P., et al., 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347, 182-184 [89] Schoene, B., Eddy, M.P., Samperton, K.M., et al., 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862-866 [90] Shete, R.H., Kulkarni, A.R., 1980. Palmocaulon hyphaeneoides sp. nov. from the Deccan Intertrappean beds of Wardha District, Maharashtra, India. Palaeontogra. Abt B. 172, 117-124 [91] Shete, R.H., Kulkarni, A.R., 1985. Palmocarpon coryphoidium sp. nov. a coryphoid palm fruit from Deccan Intertrappean beds of Wardha District, Maharashtra. J. Indian Bot. Soc. 64, 45-50 [92] Sheth, H.C., Pande, K., Bhutani, R., 2001. 40Ar-39Ar ages of Bombay trachytes:Evidence for a Palaeocene phase of Deccan volcanism. Geophys. Res. Lett. 28, 3513-3516 [93] Singh, N. P., Khanna, K. K., Mudgal, V., et al., 2001 Flora of Madhya Pradesh, Vol. III, Botanical Survey of India, Calcutta [94] Singh, V.P., 2014. Flora of Madhya Pradesh (western part). Scientific Publishers. 38, 459-462 [95] Smith, S.Y., Manchester, S.R., Samant, B., et al., 2015. Integrating paleobotanical, paleosol, and stratigraphic data to study critical transitions:a case study from the Late Cretaceous-Paleocene of India. J. Palaeontol. Soc. India 21, 137-166 [96] Smith, S.Y., Kapgate, D.K., Robinson, S., et al., 2021. Fossil fruits and seeds of Zingiberales from the Late Cretaceous-Early Cenozoic Deccan Intertrappean Beds of India. Int. J. Plant Sci. 182, 91-108 [97] Song, A., Liu, J., Liang, S.Q., et al., 2021. Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications. Plant Divers. https://doi.org/10.1016/j.pld.2021.08.003 (In Press) [98] Sprain, C.J., Renne, P.R., Vanderkluysen, L., et al., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866-870 [99] Spicer, R.A., Su, T., Valdes, P.J., et al., 2020. The topographic evolution of the Tibetan region as revealed by palaeontology. Palaeobiodivers. Palaeoenviron. https://doi.org/10.1007/s12549-020-00452-1 [100] Srivastava, J. P., Duncan, R.A., Kashyap, M., 2015. Post-K/PB younger 40Ar-39Ar ages of the Mandla lavas:Implications for the duration of the Deccan volcanism. Lithos 224-225, 214-224 [101] Srivastava, R., Srivastava, G., 2014. Fossil fruit of Cocos L. (Arecaceae) from Maastrichtian-Danian sediments of central India and its phytogeographical significance. Acta Palaeobot. 54, 67-75 [102] Srivastava, R., 2010. Fossil dicotyledonous woods from Deccan Intertrappean sediments of Ghansor, Seoni District, Madhya Pradesh, India. Palaeobotanist 59, 129-138 [103] Srivastava, R., Srivastava, G., Dilcher, D.L., 2014. Coryphoid palm leaf fossils from the Maastrichtian-Danian of Central India with remarks on phytogeography of the Coryphoideae (Arecaceae). PLoS One 9, e111738 [104] Su, T., Farnsworth, A., Spicer, R.A., et al., 2019. No high Tibetan plateau until the Neogene. Sci. Adv. 5, eaav2189 [105] Sung, T. C., and Lee, M, 1976 Mesozoic and Early Paleogene sporo-pollen assemblages from Yunnan, China. Part II. Early Upper Cretaceous assemblages from Lufeng and Monding and late Upper Cretaceous-Early Paleogene assemblage from Mengla, Yunnan. Sci. Publ. Co. 9-64, 2-10 [106] Svenning, J.C., Borchsenius, F., Bjorholm, S., et al., 2008. High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. J. Biogeogr. 35, 394-406 [107] Tao, J.R., 1988. Plant fossils from the Lepuqu Formation in Lhaze County, Xizang and their palaeoclimatological significances. Collected Papers of the Institute of Geology of the Chinese Academy of Science 3, 223-238 (in Chinese) [108] Trivedi, B.S., Verma, C.L., 1981. Sabalocaulon intertrappeum gen. et sp. nov. from the Deccan Intertrappean beds of Madhya Pradesh, India. Palaeobotanist 28-29, 329-337 [109] Uhl, N.W., Dransfield, J., 1987. Genera Palmarum. A classification of palms based on the work of Harold E. Moore, Jr (No. L-0216), Allen Press [110] Van der Burgh, J., 1984. Some palms in the Miocene of the Lower Rhenish Plain. Rev. Palaeobot. Palynol. 40, 359-374 [111] Venkatesan, T.R., Kumar, A., Gopalan, K., et al., 1997. 40Ar-39Ar age of Siberian basaltic volcanism. Chem. Geol. 138, 303-310 [112] Verma, O., Khosla, A., 2019. Developments in the stratigraphy of the Deccan Volcanic Province, peninsular India. Geosci. 351, 461-476 [113] Walther, G.R., Gritti, E.S., Berger, S., et al., 2007. Palms tracking climate change. Global Ecol. Biogeogr. 16, 801-809 [114] Wang, C.S., Dai, J.G, Zhao, X.X., 2014. Outward-growth of the Tibetan Plateau during the Cenozoic:a review. Tectonophysics 621, 1-43 [115] Wang, Q.J., Ma, F.J., Dong, J.L., et al., 2017. New costapalmate palm leaves from the Oligocene Ningming Formation of Guangxi, China, and their biogeographic and palaeoclimatic implications. Hist. Biol. 29, 594-606 [116] Wang, Q.J., Ma, F.J., Dong, J.L., et al., 2015. Coryphoid palms from the Oligocene of China and their biogeographical implications. C. R. Palevol. 14, 263-279 [117] Wing, S.L., Greenwood, D.R., 1993. Fossils and fossil climate:the case for equable continental interiors in the Eocene. Philosophical transactions of the royal society of London. Series B:Biol. Sci. 341, 243-252 [118] Xiong, Z., Ding L., Spicer R. A., et al., 2020. The early Eocene rise of the Gonjo Basin, SE Tibet:From low desert to high forest. Earth Planet. Sci. Lett. 543, 116312 [119] Zhou, W., Liu, X., Xu, Q., et al., 2013. New coryphoid fossil palm leaves (Arecaceae:Coryphoideae) from the Eocene Changchang Basin of Hainan Island, South China. Sci. China-Earth Sci. 56, 1493-1501 |
[1] | Ai Song, Jia Liu, Shui-Qing Liang, Truong Van Do, Hung Ba Nguyen, Wei-Yu-Dong Deng, Lin-Bo Jia, Cédric Del Rio, Gaurav Srivastava, Zhuo Feng, Zhe-Kun Zhou, Jian Huang, Tao Su. Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications [J]. Plant Diversity, 2022, 44(04): 406-416. |
[2] | TAO Jun-Rong YANG Jia-Jiu WANG Yu-Fei. MIOCENE WOOD FOSSILS AND PALEOCLIMATE IN INNER MONGOLIA [J]. Plant Diversity, 1994, 16(02): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||