Plant Diversity ›› 2023, Vol. 45 ›› Issue (02): 177-184.DOI: 10.1016/j.pld.2022.12.006
• Articles • Previous Articles Next Articles
Ya-Dong Zhoua, Hong Qianb, Yi Jinc, Ke-Yan Xiaod, Xue Yand,e, Qing-Feng Wangd,e
Received:
2022-06-18
Revised:
2022-12-12
Online:
2023-03-25
Published:
2023-06-13
Contact:
Ya-Dong Zhou,E-mail:ydzhou@ncu.edu.cn;Qing-Feng Wang,E-mail:qfwang@wbgcas.cn
Supported by:
Ya-Dong Zhou, Hong Qian, Yi Jin, Ke-Yan Xiao, Xue Yan, Qing-Feng Wang. Geographic patterns of taxonomic and phylogenetic β-diversity of aquatic angiosperms in China[J]. Plant Diversity, 2023, 45(02): 177-184.
Add to citation manager EndNote|Ris|BibTeX
[1] Alahuhta, J., 2015. Geographic patterns of lake macrophyte communities and species richness at regional scale. J. Veg. Sci. 26, 564-575. [2] Alahuhta, J., Antikainen, H., Hjort, J., et al., 2020. Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. J. Ecol. 108, 1262-1275. [3] Alahuhta, J., Kosten, S., Akasaka, M., et al., 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758-1769. [4] Alahuhta, J., Lindholm, M., Baastrup-Spohr, L., et al., 2021. Macroecology of macrophytes in the freshwater realm: Patterns, mechanisms and implications. Aquat. Bot. 168, 103325. [5] Alahuhta, J., Lindholm, M., Bove, C.P., et al., 2018. Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia 188, 1167-1182. [6] Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134-143. [7] Baselga, A., Orme, C.D.L., 2012. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808-812. [8] Bryant, J., Lamanna, C., Morlon, H., et al., 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11505-11511. [9] Chappuis, E., Ballesteros, E., Gacia, E., 2012. Distribution and richness of aquatic plants across Europe and Mediterranean countries: patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci. 23, 985-997. [10] Chen, S., Ouyang, Z., Xu, W., et al., 2010. A review of beta diversity studies. Biodiv. Sci. 18, 323-335. [11] Chen, Y., Ma, X., Du, Y., et al., 2012. The Chinese aquatic plants. Zhengzhou: Henan Science and Technology Press. [12] Cook, C.D.K., 1985. Range extensions of aquatic vascular plant species. J. Aquat. Plant Manage. 23, 1-6. [13] Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S. et al., 2012. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 21: 191-197. [14] Dyer, L.A., Singer, M.S., Lill, J.T., et al., 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448, 696-700. [15] Eadie, J.M., Keast, A., 1983. Resource heterogeneity and fish species diversity in lakes. Can. J. Zool. 62, 1689-1695. [16] ESRI, 2016. ArcGIS release 10.5 [online]. Available from https://www.esri.com [accessed 20 January 2019]. [17] Feld, C.K., da Silva, P.M., Sousa, J.P., et al., 2009. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos 118, 1862-1871. [18] Fu, H., Yuan, G., Jeppesen, E., et al., 2019. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206-217. [19] Garcia-Giron, J., Heino, J., Baastrup-Spohr, L., et al., 2020. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Sci. Total Environ. 723, 138021. [20] Gaston, K., 2000. Global patterns in biodiversity. Nature 405, 220-227. [21] Gaston, K.J., Davies, R.G., Orme, D.L., et al., 2007. Spatial turnover in the global avifauna. P. Roy. Soc. B-Biol. Sci. 274, 1567-1574. [22] GBIF.org (12 August 2021) GBIF Occurrence Download https://doi.org/10.15468/dl.7ct32y. [23] Goslee, S., Urban, D. 2022. ecodist: dissimilarity-based functions for ecological analysis. R package version 2.0.9. https://CRAN.R-project.org/package=ecodist [24] Graham, C.H., Fine, P.V.A., 2008. Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265-1277. [25] Griffiths, D., 2017. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 44, 1723-1733. [26] Grosberg, R. K., Vermeij, G. J., Wainwright, P. C., 2012. Biodiversity in water and on land. Curr. Biol. 22, R900-R903. [27] Guo, Q., Qian, H., Zhang, J., 2022. On the relationship between species diversity and range size. J. Biogeogr. 49, 1911-1919. [28] Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192-211. [29] Hilt, S., Vermaat, J.E., va de Weyer, K., 2022. Macrophytes. In: Mehner, T., Tockner, K. (eds.) Encyclopedia of Inland Waters, 2nd Edition. Elsevier. Volume 2 14-25 pp. [30] Huang, X., Li, F., Wang, Z., et al., 2023. Are allometric model parameters of aboveground biomass for trees phylogenetically constrained? Plant Divers. https://doi.org/10.1016/j.pld.2022.11.005. [31] Ives, A.R., Helmus, M.R., 2010. Phylogenetic metrics of community similarity. Am. Nat. 176, E128-E142. [32] Jin, Y., Qian, H. 2019. VPhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. [33] Jin, Y., Qian, H. 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. https://doi.org/10.1016/j.pld.2022.05.005. [34] Larsen, S., Comte, L., Filipe, A.F., et al., 2021. The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791-801. [35] Legendre, P., Lapointe, F.-J., Casgrain, P., 1994. Modeling brain evolution from behavior: A permutational regression approach. Evolution 48, 1487-1499. [36] Legendre, P. and Legendre, L., 2012. Numerical Ecology, 3rd ed. Elsevier. [37] Leprieur, F., Albouy, C., de Bortoli, J., et al., 2012. Quantifying phylogenetic beta diversity: Distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS One 7, e42760. [38] Lewinsohn, T.M., Roslin, T., 2008. Four ways towards tropical herbivore megadiversity. Ecol. Lett. 11, 398-416. [39] Liu, K., Song, C., Ke, L., et al., 2020. Automatic watershed delineation in the Tibetan endorheic basin: A lakeoriented approach based on digital elevation models. Geomorphology 358, 107127. [40] Lu, L., Mao, L., Yang, T., Ye, J., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. [41] McKnight, M.W., White, P.S., McDonald, R.I., et al., 2007. Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biol. 5, 2424-2432. [42] Melo, A.S., Rangel, T.F.L.V.B., Diniz-Filho, J.A.F., 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32, 226-236. [43] Murphy, K., Carvalho, P., Efremov, A., et al., 2020. Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biol. 65, 1622-1640. [44] Murphy, K., Efremov, A., Davidson, T.A., et al., 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquat. Bot. 158, 103127. [45] Nekola, J.C., White, P.S., 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867-878. [46] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2020. Vegan: community ecology package. R package version 2.6-2. https://cran.r-project.org/web/packages/vegan/index.html [47] Peixoto, F.P., Villalobos, F., Melo, A.S., et al., 2017. Geographical patterns of phylogenetic beta-diversity components in terrestrial mammals. Global Ecol. Biogeogr. 26, 573-583. [48] Pianka, E.R., 1966. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 100, 33-46. [49] Pinto-Ledezma, J.N., Larkin, D.J., Cavender-Bares, J. 2018. Patterns of beta diversity of vascular plants and their correspondence with biome boundaries across North America. Front. Ecol. Evol. 6, 194. [50] Qian, H., 2009. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks. J. Syst. Evol. 47, 509-514. [51] Qian, H., Badgley, C., Fox, D.L., 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecol. Biogeogr. 18, 111-122. [52] Qian, H., Cao, Y., Chu, C., et al., 2021b. Taxonomic and phylogenetic β-diversity of freshwater fish assemblages in relationship to geographical and climatic determinants in North America. Global Ecol. Biogeogr. 30, 1965-1977. [53] Qian, H., Chen, S., 2016. Reinvestigation on species richness and environmental correlates of bryophytes at a regional scale in China. J. Plant Ecol. 9, 734-741. [54] Qian, H., Deng, T., Beck, J., et al., 2018. Incomplete species lists derived from global and regional specimen-record databases affect macroecological analyses: A case study on the vascular plants of China. J. Biogeogr. 45, 2718-2729. [55] Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [56] Qian, H., Jin, Y., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233-239. [57] Qian, H., Jin, Y., Leprieur, F., et al., 2020. Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography 43, 1706-1716. [58] Qian, H., Jin, Y., Leprieur, F., et al., 2021a. Patterns of phylogenetic beta diversity measured at deep evolutionary histories across geographical and ecological spaces for angiosperms in China. J. Biogeogr. 48, 773-784. [59] Qian, H., Ricklefs, R.E., 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 10, 737-744. [60] Qian, H., Swenson, N.G., Zhang, J.L., 2013. Phylogenetic beta diversity of angiosperms in North America. Global Ecol. Biogeogr. 22, 1152-1161. [61] R Core Team, 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [62] Ricklefs, R.E., 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1-15. [63] Santamaria, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23, 137-154. [64] Si, X., Zhao, Y., Chen, C. et al., 2017. Beta-diversity partitioning: methods, applications and perspectives. Biodiv. Sci. 25, 464-480. [65] Smouse, P.E., Long, J.C., Sokal, R.R., 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35, 627-632. [66] Stevens, G.C., 1989. The latitudinal gradients in geographical range: How so many species coexist in the tropics. Am. Nat. 133, 240-256. [67] Stevens, R.D., Willig, M.R., 2002. Geographical ecology at the community level: Perspectives on the diversity of New World bats. Ecology 83, 545-560. [68] Terlizzi, A., Anderson, M.J., Bevilacqua, S., et al., 2009. Beta diversity and taxonomic sufficiency: Do higher-level taxa reflect heterogeneity in species composition? Divers. Distrib. 15, 450-458. [69] Tomasovych, A., Kennedy, J.D., Betzner, T.J. et al., 2016. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proc. Soc. B 283, 20153027. [70] Viana D.S., Figuerola, K.S., Manca, M., et al., 2016. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39, 281-288. [71] Vymazal, J., Kropfelova, L. 2008. Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer: Dordrecht, The Netherlands. [72] Wang, Q., Li, W., Wang, G., et al. 2021. Aquatic Plants of China. Wuhan: Hubei Science and Technology Press. [73] Wang, S., Dou, H., 1998. China Lakes Record. Science Press. [74] Wang, Z., Fang J., Tang, Z., et al., 2012. Geographical patterns in the beta diversity of China's woody plants: The influence of space, environment, and range size. Ecography 35, 1092-1102. [75] Weinstein, B.G., Tinoco, B., Parra, J.L., et al., 2014. Taxonomic, phylogenetic, and trait beta diversity in South American hummingbirds. Am Nat. 184, 211-224. [76] Whittaker, R.H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279-338. [77] Ye, J., Lu, L., Liu, B., et al., 2019. Phylogenetic delineation of regional biota: A case study of the Chinese flora. Mol. Phylogenet. Evol. 135, 222-229. [78] Yue, J., Li, R., 2021. Phylogenetic relatedness of woody angiosperm assemblages and its environmental determinants along a subtropical elevational gradient in China. Plant Divers. 43, 111-116. [79] Zhang, J., Qian, H., 2022. U.Taxonstand: An R package for standardizing scientific names of plants and animals. Plant Divers. https://doi.org/10.1016/j.pld.2022.09.001. [80] Zhang, Y.-Z., Qian, L.-S., Spalink, D., et al., 2021. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 43, 181-191. [81] Zhao, S., Fang, J., Peng, C., et al., 2006. Relationships between species richness of vascular plants and terrestrial vertebrates in China: Analyses based on data of nature reserves. Divers. Distrib. 12, 189-194. [82] Zhou, Y., Qian, H., Xiao, K., et al., 2023. Geographic patterns and environmental correlates of taxonomic and phylogenetic diversity of aquatic plants in China. J. Syst. Evol. 0, 1-11. https://doi.org/10.1111/jse.12939 [83] Zhou, Y., Xiao, K., Chen, S., et al., 2022. Altitudinal diversity of aquatic plants in the Qinghai-Tibet Plateau. Freshwater Biol. 67, 709-719. |
[1] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[2] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity [J]. Plant Diversity, 2023, 45(04): 479-484. |
[3] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains [J]. Plant Diversity, 2023, 45(01): 80-97. |
[4] | Han-Zhang Song, Serge V. Naugolnykh, Xin-Kai Wu, Xiao-Yan Liu, Jian-Hua Jin. Fertile Woodwardia from the middle Eocene of South China and its implications for palaeogeography and palaeoclimate [J]. Plant Diversity, 2022, 44(06): 565-576. |
[5] | Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China [J]. Plant Diversity, 2022, 44(05): 436-444. |
[6] | Boniface K. Ngarega, John M. Nzei, Josphat K. Saina, Marwa Waseem A. Halmy, Jin-Ming Chen, Zhi-Zhong Li. Mapping the habitat suitability of Ottelia species in Africa [J]. Plant Diversity, 2022, 44(05): 468-480. |
[7] | Ai Song, Jia Liu, Shui-Qing Liang, Truong Van Do, Hung Ba Nguyen, Wei-Yu-Dong Deng, Lin-Bo Jia, Cédric Del Rio, Gaurav Srivastava, Zhuo Feng, Zhe-Kun Zhou, Jian Huang, Tao Su. Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications [J]. Plant Diversity, 2022, 44(04): 406-416. |
[8] | Hong Qian, Jian Zhang, Mei-Chen Jiang. Global patterns of fern species diversity: An evaluation of fern data in GBIF [J]. Plant Diversity, 2022, 44(02): 135-140. |
[9] | Xiaoyang Song, Min Cao, Jieqiong Li, Roger L. Kitching, Akihiro Nakamura, Melinda J. Laidlaw, Yong Tang, Zhenhua Sun, Wenfu Zhang, Jie Yang. Different environmental factors drive tree species diversity along elevation gradients in three climatic zones in Yunnan, southern China [J]. Plant Diversity, 2021, 43(06): 433-443. |
[10] | Jun-Nan Wan, Ndungu J. Mbari, Sheng-Wei Wang, Bing Liu, Brian N. Mwangi, Jean R. E. Rasoarahona, Hai-Ping Xin, Ya-Dong Zhou, Qing-Feng Wang. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar [J]. Plant Diversity, 2021, 43(02): 117-124. |
[11] | Mengesha Asefa, Min Cao, Yunyun He, Ewuketu Mekonnen, Xiaoyang Song, Jie Yang. Ethiopian vegetation types, climate and topography [J]. Plant Diversity, 2020, 42(04): 302-311. |
[12] | Richard T. Corlett. Safeguarding our future by protecting biodiversity [J]. Plant Diversity, 2020, 42(04): 221-228. |
[13] | Popova Svetlana, Utescher Torsten, Averyanova Anna, Tarasevich Valentina, Tropina Polina, Xing Yaowu. Early Miocene flora of central Kazakhstan (Turgai Plateau) and its paleoenvironmental implications [J]. Plant Diversity, 2019, 41(03): 183-197. |
[14] | Santosh Kumar Rana, Hum Kala Rana, Krishna Kumar Shrestha, Suresh Sujakhu, Sailesh Ranjitkar. Determining bioclimatic space of Himalayan alder for agroforestry systems in Nepal [J]. Plant Diversity, 2018, 40(01): 1-18. |
[15] | Timothy J. Entwisle, Chris Cole, Peter Symes. Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change [J]. Plant Diversity, 2017, 39(06): 338-347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||