[1] Amorim, F.W., Wyatt, G.E., Sazima, M., 2014. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic rain forest, Brazil. Naturwissenschaften 101, 893-905. [2] Anderson, B., Johnson, S.D., 2008. The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution 62, 220-225. [3] Armbruster, W. S., and B. G. Baldwin. 1998. Switch from specialized to generalized pollination. Nature 394, 632. [4] Cowley, E.J., 1982. A revision of Roscoea (Zingiberaceae). Kew Bull. 36, 747-777. [5] Fan, Y.L., Li, Q.J., 2012. Stigmatic fluid aids self-pollination in Roscoea debilis (Zingiberaceae): a new delayed selfing mechanism. Ann. Bot. 110, 969-975. [6] Fenster, C.B., Marten-Rodriguez, S., 2007. Reproductive assurance and the evolution of pollination specialization. Int. J. Plant. Sci. 168, 215-228. [7] Fenster, C.B., Armbruster, W.S., Wilson, P., et al., 2004. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375-403. [8] Ferrero, V., Navarro, L., Castro, S., et al., 2020. Global patterns of reproductive and cytotype diversity in an invasive clonal plant. Biol. Invasions 22, 1691-1703. [9] Gould, S.J., 1970. Dollo on Dollo's law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3, 189-212. [10] Hargreaves, A.L., Harder, L.D., Johnson, S.D., 2009. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259-276. [11] Huang, S.Q., Fenster, C.B., 2007. Absence of long-proboscid pollinators for long-corolla-tubed Himalayan Pedicularis species: implications for the evolution of corolla length. Int. J. Plant. Sci. 168, 325-331. [12] Johnson, S.D., More, M., Amorim, F.W., et al., 2017. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct. Ecol. 31, 101-115. [13] Klumpers, S.G., Stang, M., Klinkhamer, P.G., 2019. Foraging efficiency and size matching in a plant-pollinator community: the importance of sugar content and tongue length. Ecol. Lett. 22, 469-479. [14] Moore, J.C., Pannell, J.R., 2011. Sexual selection in plants. Curr. Biol. 21, R176-R182. [15] Muchhala, N., Thomson, J.D., 2009. Going to great lengths: selection for long corolla tubes in an extremely specialized bat-flower mutualism. Proc. Roy. Soc. B. 276, 2147-2152. [16] Newman, E., Johnson, S.D., 2021. A shift in long-proboscid fly pollinators and floral tube length among populations of Erica junonia (Ericaceae). S. Afr. J. Bot. 142, 451-458. [17] Ngamriabsakul, C., Newman, M.F., Cronk, Q.C.B., 2000. Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinburgh J. Bot. 57, 39-61. [18] Nilsson, L.A., 1988. The evolution of flowers with deep corolla tubes. Nature 334, 147-149. [19] Nilsson, L.A., 1998. Deep flowers for long tongues: reply from LA Nilsson. Trends Ecol. Evol. 13, 509. [20] Paudel, B.R., Shrestha, M., Burd, M., 2016. Coevolutionary elaboration of pollination-related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas. New Phytol. 211, 1402-1411. [21] Paudel, B.R., Shrestha, M., Dyer, A.G., 2017. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae). PLoS One 12, e0180460. [22] Paudel, B.R., Shrestha, M., Dyer, A.G., et al., 2015. Out of Africa: evidence of the obligate mutualism between long corolla tubed plant and long-tongued fly in the Himalayas. Ecol. Evol. 5, 5240-5251. [23] Paudel, B.R., Kessler, A., Shrestha, M., et al., 2019. Geographic isolation, pollination syndromes, and pollinator generalization in Himalayan Roscoea spp. (Zingiberaceae). Ecosphere 10, e02943. [24] Perez-Barrales, R., Arroyo, J., Armbruster, W.S. 2007. Differences in pollinator faunas generate geographic differences in floral morphology and integration in Narcissus papyraceus (Amaryllidaceae). Oikos 116, 1904-1918. [25] Petanidou, T., Godfree, R.C., Song, D.S., 2012. Self-compatibility and plant invasiveness: comparing species in native and invasive ranges. Perspect. Plant Ecol. Evol. Syst.14, 3-12. [26] Roels, S.A.B., Kelly, J.K., 2011. Rapid evolution caused by pollinator loss in Mimulus guttatus. Evolution 65, 2541-2552. [27] Stebbins, G.L., 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu. Rev. Ecol. Syst. 1, 307-326. [28] Wang, X.P., Yu, W.B., Sun, S.G., et al., 2016. Pollen size strongly correlates with stigma depth among Pedicularis species. J. Integr. Plant Biol. 58, 818-821. [29] Ward, J.L., Blum, M.J., 2012. Exposure to an environmental estrogen breaks down sexual isolation between native and invasive species. Evol. Appl. 5, 901-912. [30] Wasserthal, L.T., 1997. The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot. Acta. 110, 343-359. [31] Zhang, Z.Q., Li, Q.J., 2008. Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Ann. Bot. 102, 531-538. [32] Zhang, Z.Q., Kress, W.J., Xie, W.J., et al., 2011. Reproductive biology of two Himalayan alpine gingers (Roscoea spp., Zingiberaceae) in China: pollination syndrome and compensatory floral mechanisms. Plant Biol. 13, 582-589. [33] Zhao, J.L., Gugger, P.F., Xia, Y.M., et al., 2016. Ecological divergence of two closely related Roscoea species associated with late Quaternary climate change. J. Biogeogr. 43, 1990-2001. |