Plant Diversity ›› 2024, Vol. 46 ›› Issue (01): 91-100.DOI: 10.1016/j.pld.2023.05.001
• Articles • Previous Articles Next Articles
Vincent Okelo Wangaa,b,c, Boniface K. Ngaregab,c,d, Millicent Akinyi Ouloa,b,c, Elijah Mbandi Mkalaa,b,c, Veronicah Mutele Ngumbauf, Guy Eric Onjalalainaa,b,c, Wyclif Ochieng Odagoa,b,c, Consolata Nanjalaa,b,c, Clintone Onyango Ochienga,b,c, Moses Kirega Gichuae, Robert Wahiti Giturue, Guang-Wan Hua,b,c
Received:
2022-11-04
Revised:
2023-04-27
Online:
2024-01-25
Published:
2024-03-02
Contact:
Guang-Wan Hu,E-mail:guangwanhu@wbgcas.cn
Supported by:
Vincent Okelo Wanga, Boniface K. Ngarega, Millicent Akinyi Oulo, Elijah Mbandi Mkala, Veronicah Mutele Ngumbau, Guy Eric Onjalalaina, Wyclif Ochieng Odago, Consolata Nanjala, Clintone Onyango Ochieng, Moses Kirega Gichua, Robert Wahiti Gituru, Guang-Wan Hu. Projected impacts of climate change on the habitat of Xerophyta species in Africa[J]. Plant Diversity, 2024, 46(01): 91-100.
Add to citation manager EndNote|Ris|BibTeX
[1] Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., et al., 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541-545. https://doi.org/10.1111/ecog.01132. [2] Alcantara, S., de Mello-Silva, R., Teodoro, G.S., et al., 2015. Carbon assimilation and habitat segregation in resurrection plants: A comparison between desiccation- and non-desiccation-tolerant species of Neotropical Velloziaceae (Pandanales). Funct. Ecol. 29, 1499-1512. https://doi.org/10.1111/1365-2435.12462. [3] Alcantara, S., Ree, R.H., Mello-silva, R., 2018. Accelerated diversification and functional trait evolution in Velloziaceae reveal new insights into the origins of the campos rupestres’ exceptional floristic richness. Ann. Bot. 122, 165-180. https://doi.org/10.1093/aob/mcy063. [4] Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x. [5] Barve, N., Barve, V., Jiménez-Valverde, et al., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. model. 222 (11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011. [6] Beaumont, L.J., Hughes, L., Poulsen, M., 2005. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251-270. https://doi.org/10.1016/j.ecolmodel.2005.01.030. [7] Behnke, H.D., Hummel, E., Hillmer, S., et al., 2013. A revision of African Velloziaceae based on leaf anatomy characters and rbcL nucleotide sequences. Bot. J. Linn. Soc. 172, 22-94. https://doi.org/10.1111/boj.12018. [8] Brown, J.L., Bennett, J.R., French, C.M., 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses.PeerJ, 5, e4095. https://doi.org/10.7717/peerj.4095. [9] Burke, A., 2004. From plains to inselbergs: species in special habitats as indicators for climate change?J. Biogeogr. 31, 831-841. https://doi.org/10.1046/j.1365-2699.2003.00984.x. [10] Beentje, H., Adamson, J., Bhanderi, D., 1994.Kenya trees, shrubs, and lianas. National Museums of Kenya. P.O. Box 40658, Nairobi, Kenya. [11] Chen, Y., Shi, X., Zhang, L., et al., 2019. Effects of increased precipitation on the life history of spring-and autumn-germinated plants of the cold desert annual Erodium oxyrhynchum (Geraniaceae). AoB Plants 11, plz004. https://doi.org/10.1093/aobpla/plz004. [12] Coban, H.O., Orucu, O.K., Arslan, E.S., 2020. MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 12, 2671. https://doi.org/10.3390/su12072671. [13] Costa, M.C.D., Artur, M.A., Maia, J., et al., 2017. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nat. Plants 3, 1-10. https://doi.org/10.1038/nplants.2017.38. [14] Dar, J.A., Subashree, K., Bhat, N.A., et al., 2020. Role of major forest biomes in climate change mitigation: an eco-biological perspective. In: Roychoudhury, R.N., Nautiyal, S., Agarwal, S., Baksi, S. (Eds.), Socio-economic and Eco-Biological Dimensions in Resource Use and Conservation. Springer, Cham, pp. 483-526. https://doi.org/10.1007/978-3-030-32463-6_24. [15] De Mello-Silva, R., 2005. Morphological analysis, phylogenies and classification in Velloziaceae.Bot. J. Linn. Soci. 148, 157-173. https://doi.org/10.1111/j.1095-8339.2005.00399.x. [16] Elith, J., Phillips, S.J., Hastie, T., et al., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x. [17] Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x. [18] Farrant, J.M., Cooper, K., Hilgart, A., et al., 2015. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 242, 407-426. https://doi.org/10.1007/s00425-015-2320-6. [19] Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (12), 4302–4315. https://doi.org/10.1002/joc.5086. [20] Garwe, D., Thomson, J. A., Mundree, S.G., 2003. Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker. J. Exp. Bot. 54, 191-201. https://doi.org/10.1093/jxb/erg013. [21] Goodman, E.A., 2021. Sleeping Beauty of the Plant World? Xerophyta elegans: A rare flowering perennial resurrection plant. html: https://conservancy.umn.edu/bitstream/handle/11299/225165/Xerophyta%20elegans%20by%20Elizabeth%20Goodman.pdf?sequence=1. [22] Gent, P.R., Danabasoglu, G., Donner, L.J., et al., 2011. The community climate system model version 4. J.Clim. 24, 4973–4991. https://doi.org/10.1175/2011JCLI4083.1. [23] Gomes, V.H., IJff, S.D., Raes, N., et al., 2018. Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Sci. Rep. 8, 1-12. https://doi.org/10.1038/s41598-017-18927-1. [24] Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.: A Journal of the Royal Meteorological Society 25 (15), 1965–1978. https://doi.org/10.1002/joc.1276. [25] IUCN 2023. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org. [26] Keppel, G., Van Niel, K.P., Wardell-Johnson, G.W., et al., 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393-404. [27] Leal, M., 2004: The African rain forest during the last glacial maximum, an archipelago of forests in a sea of grass, Ph.D. thesis, Wageningen, University. [28] Lee, H.K., Lee, S.J., Kim, M.K., et al., 2020. Prediction of plant phenological shift under climate change in south korea. Sustainability 12, 1-14. https://doi.org/10.3390/su12219276. [29] Liu, C, Ikeda, K, Rasmussen, R, et al., 2016. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 23, 91–105. [30] Lyall, R., Schlebusch, S.A., Proctor, J., et al., 2020. Vegetative desiccation tolerance in the resurrection plant Xerophyta humilis has not evolved through reactivation of the seed canonical LAFL regulatory network. Plant J. 101, 1349-1367. https://doi.org/10.1111/tpj.14596. [31] McPherson, G., van der Werff, H., Keating, R. C., 1997. A new species of Xerophyta (Velloziaceae) from Madagascar. Novon 7, 387-394. https://doi.org/10.2307/3391770. [32] Mello-Silva, R., Santos, D.Y.A.C., Salatino, M.L.F., et al., 2011. Five vicarious genera from Gondwana: The Velloziaceae as shown by molecules and morphology. Ann. Bot. 108, 87-102. https://doi.org/10.1093/aob/mcr107. [33] Merow, C., Silander Jr, J. A., 2014. A comparison of Maxlike and Maxent for modelling species distributions. Methods Ecol. Evol. 5, 215-225. https://doi.org/10.1111/2041-210X.12152. [34] Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x. [35] Mkala, E. M., Mutinda, E. S., Wanga, V. O., et al., 2022a. Modeling impacts of climate change on the potential distribution of three endemic Aloe species critically endangered in East Africa. Ecol. Inform. 71, 101765. https://doi.org/10.1016/j.ecoinf.2022.101765. [36] Mkala, E.M., Jost, M., Wanke, S., et al., 2022b. How vulnerable are holoparasitic plants with obligate hosts to negative climate change impacts? Ecol. Inform. 69, 101636. https://doi.org/10.1016/j.ecoinf.2022.101636. [37] Ngarega, B. K., Masocha, V. F., Schneider, H., 2021. Forecasting the effects of bioclimatic characteristics and climate change on the potential distribution of Colophospermum mopane in southern Africa using Maximum Entropy (Maxent). Ecol. Inform. 65, 101419. https://doi.org/10.1016/j.ecoinf.2021.101419. [38] Ngarega, B.K., Nzei, J.M., Saina, J.K., et al., 2022a. Mapping the habitat suitability of Ottelia species in Africa. Plant Divers. 44, 468-480. https://doi.org/10.1016/j.pld.2021.12.006. [39] Ngarega, B.K., Gikonyo, F.N., Wanga, V.O., et al., 2022b. Threatened Fabaceae taxa in coastal East Africa: Current and future modelled distributions and conservation priorities. S. Afr. J. Bot. 150, 779-788. https://doi.org/10.1016/j.sajb.2022.08.033. [40] Nzei, J.M., Ngarega, B.K., Mwanzia, V.M., et al., 2021. The past, current, and future distribution modeling of four water lilies (Nymphaea) in Africa indicates varying suitable habitats and distribution in climate change. Aquat. Bot. 173, 103416. https://doi.org/10.1016/j.aquabot.2021.103416. [41] Park, H. S., Kim, S. J., Stewart, A. L., et al., 2019. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci. Adv. 5, eaax8203. https://doi.org/10.1126/sciadv.aax8203. [42] Park, I.K., Borzee, A., Park, J., et al., 2022. Past, present, and future predictions on the suitable habitat of the Slender racer (Orientocoluber spinalis) using species distribution models. Ecol. Evol. 12, 1-13. https://doi.org/10.1002/ece3.9169. [43] Pearson, R.G., 2006. Climate change and the migration capacity of species. Trends Ecol. Evol. 21, 111-113. https://doi.org/10.1016/j.tree.2005.11.022. [44] Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x. [45] R Core Team, 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/. [46] Radermacher, A.L., du Toit, S.F., Farrant, J.M., 2019. Desiccation-driven senescence in the resurrection plant Xerophyta schlechteri (Baker) N.L. Menezes: Comparison of anatomical, ultrastructural, and metabolic responses between senescent and non-senescent tissues. Front. Plant Sci. 10, 1-16. https://doi.org/10.3389/fpls.2019.01396. [47] Remya, K., Ramachandran, A., Jayakumar, S., 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol. Eng. 82, 184-188. https://doi.org/10.1016/j.ecoleng.2015.04.053. [48] Serdeczny, O., Adams, S., Baarsch, F., et al., 2017. Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Reg. Environ. Chang. 17, 1585-1600. https://doi.org/10.1007/s10113-015-0910-2. [49] Sinclair, S.J., White, M.D., Newell, G.R., 2010. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15, 13. https://doi.org/10.5751/ES-03089-150108. [50] Sintayehu, D.W., 2018. Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosyst. Heal. Sustain. 4, 225-239. https://doi.org/10.1080/20964129.2018.1530054. [51] Stockwell, D.R., Peterson, A.T., 2002. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 148, 1–13. https://doi.org/10.1016/S0304-3800(01)00388-X. [52] Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293, https://doi.org/10.1126/science.3287615. [53] Thomas, C.D., 2010. Climate, climate change and range boundaries. Divers. Distrib. 16, 488-495. https://doi.org/10.1111/j.1472-4642.2010.00642.x. [54] Van der Putten, W.H., Macel, M., Visser, M.E., 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels.Phil. Trans. Royal Soci. B: Biol. Sci. 365, 2025-2034. https://doi.org/10.1098/rstb.2010.0037. [55] Van Vuuren, D.P., Edmonds, J., Kainuma, M., et al., 2011. The representative concentration pathways: an overview. Clim. Change 109, 5–31. [56] Wan, J.N., Mbari, N.J., Wang, S.W., et al., 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 43, 117-124. https://doi.org/10.1016/j.pld.2020.07.001. [57] Wanga, V.O., Dong, X., Oulo, M.A., et al., 2020. The complete chloroplast genome sequence of Xerophyta spekei (Velloziaceae). Mitochondrial DNA Part. B 5, 100–101. https://doi.org/10.1080/23802359.2019.1698365. [58] Wanga, V.O., Dong, X., Oulo, M.A., et al., 2021. Complete chloroplast genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): Comparative genomics and phylogenomic placement. Front. Plant Sci. 12, 1-16. https://doi.org/10.3389/fpls.2021.691833. [59] Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607-611. https://doi.org/10.1111/j.1600-0587.2009.06142.x. [60] Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x. [61] Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335-342. https://doi.org/10.1890/10-1171.1. [62] Wei, B., Wang, R., Hou, K., et al., 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 16, e00477. https://doi.org/10.1016/j.gecco.2018.e00477. [63] Wiens, J.A., Stralberg, D., Jongsomjit, D., et al., 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. U.S.A. 106, 19729-19736. https://doi.org/10.1073/pnas.0901639106. [64] Yan, X., Wang, S., Duan, Y., et al., 2021. Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecol. Evol. 11, 16099-16112. https://doi.org/10.1002/ece3.8288. [65] Zhang, K., Liu, H., Pan, H., et al., 2020. Shifts in potential geographical distribution of Pterocarya stenoptera under climate change scenarios in China. Ecol. Evol. 10, 4828-4837. https://doi.org/10.1002/ece3.6236. [66] Zhu, G.P., Li, G.Q., Bu, W.J., et al., 2013. Ecological niche modeling and its applications in biodiversity conservation. Biodivers. Sci. 21, 90-98. https://doi.org/10.3724/sp.j.1003.2013.09106. |
[1] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[2] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity [J]. Plant Diversity, 2023, 45(04): 479-484. |
[3] | Boniface K. Ngarega, John M. Nzei, Josphat K. Saina, Marwa Waseem A. Halmy, Jin-Ming Chen, Zhi-Zhong Li. Mapping the habitat suitability of Ottelia species in Africa [J]. Plant Diversity, 2022, 44(05): 468-480. |
[4] | Jun-Nan Wan, Ndungu J. Mbari, Sheng-Wei Wang, Bing Liu, Brian N. Mwangi, Jean R. E. Rasoarahona, Hai-Ping Xin, Ya-Dong Zhou, Qing-Feng Wang. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar [J]. Plant Diversity, 2021, 43(02): 117-124. |
[5] | Richard T. Corlett. Safeguarding our future by protecting biodiversity [J]. Plant Diversity, 2020, 42(04): 221-228. |
[6] | Santosh Kumar Rana, Hum Kala Rana, Krishna Kumar Shrestha, Suresh Sujakhu, Sailesh Ranjitkar. Determining bioclimatic space of Himalayan alder for agroforestry systems in Nepal [J]. Plant Diversity, 2018, 40(01): 1-18. |
[7] | Timothy J. Entwisle, Chris Cole, Peter Symes. Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change [J]. Plant Diversity, 2017, 39(06): 338-347. |
[8] | Zhe Ren a, b, Hua Peng a, *, Zhen-Wen Liu a, **. The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity [J]. Plant Diversity, 2016, 38(03): 142-148. |
[9] | Roy Turkington, William L. Harrower. An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China [J]. Plant Diversity, 2016, 38(01): 1-10. |
[10] | LI Xiong-, YANG Shi-Hai-, YANG Yun-Qiang-, YIN Xin-, SUN Xu-Dong-, YANG Yong-Ping. Comparative Physiological and Molecular Analyses of Intraspecific Differences of Stipa purpurea (Poaceae) Response to Drought [J]. Plant Diversity, 2015, 37(4): 439-452. |
[11] | GONG Ye, JING Peng-Fei, WEI Yu-Kun, HUANG Wei-Chang, CUI Lang-Jun. Potential Distribution of Bletilla striata (Orchidaceae) in China and Its Climate Characteristics [J]. Plant Diversity, 2014, 36(02): 237-244. |
[12] | YANG Xue-Qing-, YANG Xue-Fei-, HE Jun-, LIU Pei-Gui-, HU Jian-Chu. Future Distribution of Tuber indicum under Climate Change Scenarios——A Case Study in Yunnan Province [J]. Plant Diversity, 2013, 35(1): 62-72. |
[13] | TUN Jian-Guo. The Potential Effects of Climate Change on the Distributions of Seven Arbors Plants in China [J]. Plant Diversity, 2011, 33(3): 335-349. |
[14] | Gao Baochun. THE SOCIOLOGICAL CHARACTERISTICS AND POLLEN MORPHOLOGY OF ACANTHOCHLAMYS [J]. Plant Diversity, 1987, 9(04): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||