[1] Agduma, A. R., Jiang, X., Liang, D. M., et al., 2022. Stem hydraulic traits are decoupled from leaf ecophysiological traits in mangroves in Southern Philippines. J. Plant Biol. 65, 389-401. [2] Aritsara, A. N. A., Wang, S., Li, B. N., et al., 2022. Divergent leaf and fine root "pressure-volume relationships" across habitats with varying water availability. Plant Physiol. 190, 2246-2259. [3] Bao, S. D., 2000. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing. [4] Beaulieu, J. M., Leitch, I. J., Patel, S., et al., 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179, 975-986. [5] Beckett, H. A., Bryant, C., Neeman, T., et al., 2023. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. Plant Cell Environ. http://doi.org/https://doi.org/10.1111/pce.14764. [6] Brodribb, T. J., Field, T. S., Jordan, G. J., 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890-1898. [7] Brodribb, T. J., Holbrook, N. M., 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol. 132, 2166-2173. [8] Brodribb, T. J., McAdam, S. A., Jordan, G. J., et al., 2014. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl. Acad. Sci. U.S.A. 111, 14489-14493. [9] Brodribb, T. J., McAdam, S. A., 2011. Passive origins of stomatal control in vascular plants. Science, 331, 1197985. [10] Buckley, T. N., John, G. P., Scoffoni, C., et al., 2017. The sites of evaporation within leaves. Plant Physiol. 173, 1763-1782. [11] Buckley, T. N., Mott, K. A., 2002. Stomatal water relations and the control of hydraulic supply and demand. Prog. Bot. 63, 309-325. [12] Buckley, T. N., 2019. How do stomata respond to water status?New Phytol. 224, 21-36. [13] Buckley, T. N., 2016. Stomatal responses to humidity:has the'black box'finally been opened?Plant Cell Environ. 39, 482-484. [14] Buckley, T. N., 2005. The control of stomata by water balance. New Phytol. 168, 275-292. [15] Cai, G. C., Carminati, A., Gleason, S. M., et al., 2023. Soil-plant hydraulics explain stomatal efficiency-safety tradeoff. Plant Cell Environ. 46, 3120-3127. [16] Chen, X. Y., 2020. Relationship between Leaf Anatomical Structure and Photosynthetic Capacity of Mangrove Plants in Hainan. Guangxi University, Nanning, China. [17] Choat, B., Brodribb, T. J., Brodersen, C. R., et al., 2018. Triggers of tree mortality under drought. Nature. 28, 531-539. [18] Cowan, I. R., 1965. Transport of water in the soil-plant-atmosphere continuum. J. Appl. Ecol. 2, 221-239. [19] Cowan, I. R., 1977. Stomatal behaviour and environment. Adv. Bot. Res. 4, 117-228. [20] Darwin, F., 1898. Observations on stomata. Philos. Trans. R. Soc. Lond. B Biol. Sci. 190, 531-621. [21] de Boer, H. J., Drake, P. L., Wendt, E., et al., 2016a. Apparent overinvestment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats. Plant Physiol. 172, 2286-2299. [22] de Boer, H. J., Price, C. A., Wagner-Cremer, F., et al., 2016b. Optimal allocation of leaf epidermal area for gas exchange. New Phytol. 210, 1219-1228. [23] Drake, P. L., Froend, R. H., Franks, P. J., 2013. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495-505. [24] Duke, N. C., Ball, M. C., Ellison, J. C., 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27-47. [25] Durand, M., Brendel, O., Bure, C., et al., 2019. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought:impacts on the whole-plant transpiration efficiency of poplar genotypes. New Phytol. 222, 1789-1802. [26] Elliott-Kingston, C., Haworth, M., Yearsley, J. M., et al., 2016. Does size matter?Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front. Plant Sci. 7, e1253. [27] Fu, X. L., Meinzer, F. C., Woodruff, D. R., et al., 2019. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry. Plant Cell Environ. 42, 2245-2258. [28] Gauthey, A., Backes, D., Balland, J., et al., 2022. The role of hydraulic failure in a massive mangrove die-off event. Front. Plant Sci. 13, 822136. [29] Gerardin, T., Douthe, C., Flexas, J., et al., 2018. Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in Nicotiana tabacum. Environ. Exp. Bot. 153, 188-197. [30] Han, S. M., 2011. Study on Landscape Pattern Dynamics and Driving Forces in Mangroves Wetlands of Dongzhaigang Harbour, Hainan Province. Ph.D. thesis, Beijing Forest University, Beijing, China. [31] He, Z. W., Feng, X., Chen, Q. P., et al., 2022. Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6, 738-1749. [32] Henry, C., John, G. P., Pan, R. H., et al., 2019. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398. [33] Hu, M. J., Sun, W. H., Tsai, W. C., et al., 2020. Chromosome-scale assembly of the Kandelia obovata genome. Hortic. Res. 7, 75. [34] Jalakas, P., Takahashi, Y., Waadt, R., et al., 2021. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytol. 232, 468-475. [35] Jiang, G. F., Goodale, U. M., Liu, Y. Y., et al., 2017. Salt management strategy defines the stem and leaf hydraulic characteristics of six mangrove tree species. Tree Physiol. 37, 389-401. [36] Jiang, G. F., Li, S. Y., Li, Y. C., et al., 2022. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. Plant Physiol. 189, 2159-2174. [37] Jiang, G. F., Li, S. Y., Dinnage, R., et al., 2023. Diverse mangroves deviate from other angiosperms in their genome size, leaf cell size and cell packing density relationships. Ann. Bot. 131, 347-360. [38] Jiang, X., 2021. Xylem Hydraulic Structure and Function in Mangroves. Ph.D. thesis, Guangxi University, Nanning, China. [39] Jiang, X., Choat, B., Zhang, Y. J., et al., 2021. Variation in xylem hydraulic structure and function of two mangrove species across a latitudinal gradient in Eastern Australia. Water. 13, 850. [40] Lawson, T., Vialet-Chabrand, S., 2019. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 221, 93-98. [41] Leng, B., 2020. Transpriational Water Consumption and its Influencing Factors in Mangroves of Intertidal Zone. Ph.D. thesis, Guangxi University, Nanning, China. [42] Martins, S. C. V., McAdam, S. A. M., Deans, R. M., et al., 2016. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers:results from simultaneous measurements of liquid and vapour fluxes in leaves. Plant Cell Environ. 39, 694-705. [43] Martin-StPaul, N., Delzon, S., Cochard, H., 2017. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437-1447. [44] McAdam, S. A. M., Brodribb, T. J., 2015. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol. 167, 833-843. [45] McAdam, S. A. M., Brodribb, T. J., 2016. Linking turgor with ABA biosynthesis:implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiol. 171, 2008-2016. [46] McAusland, L., Vialet-Chabrand, S., Davey, P., et al., 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol. 211, 1209-1220. [47] Meinzer, F. C., 1993. Stomata1 control of transpiration. Tree. 8, 289-294. [48] Meinzer, F. C., Smith, D. D., Woodruff, D. R., et al., 2017. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Plant Cell Environ. 40, 1618-1628. [49] Peak, D., Mott, K. A., 2011. A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ. 34, 162-178. [50] Raven, J. A., 2014. Speedy small stomata?J. Exp. Bot. 65, 1415-1424. [51] Reef, R., Lovelock, C. E., 2015. Regulation of water balance in mangroves. Ann. Bot. 115, 385-395. [52] Rockwell, F. E., Holbrook, N. M., Stroock, A. D., 2014. The competition between liquid and vapor transport in transpiring leaves. Plant Physiol. 164, 1741-1758. [53] Rodriguez-Dominguez, C. M., Brodribb, T. J., 2020. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126-134. [54] Sack, L., Frole, K., 2006. Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees. Ecology. 87, 483-491. [55] Sack, L., Holbrook, N. M., 2006. Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361-381. [56] Sack, L., Pasquet-Kok, J., Bartlett, M., 2011. Leaf pressure-volume curve parameters. PrometheusWiki. Available at:https://prometheusprotocols.net/function/water-relations/pressure-volume-curves/leaf-pressure-volume-curve-parameters. [57] Scoffoni, C., Albuquerque, C., Brodersen, C. R., et al., 2017. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol. 173, 1197-1210. [58] Scoffoni, C., McKown, A. D., Rawls, M., et al., 2012. Dynamics of leaf hydraulic conductance with water status:quantification and analysis of species differences under steady state. J. Exp. Bot. 63, 643-658. [59] Simonin, K. A., Roddy, A. B., 2018. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 16, e2003706. [60] Skelton, R. P., Brodribb, T. J., McAdam, S. A., et al., 2017. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance:evidence from an evergreen woodland. New Phytol. 215, 1399-1412. [61] Skelton, R. P., Dawson, T. E., Thompson, S. E., et al., 2018. Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiol. 177, 1066-1077. [62] Sperry, J. S., 2000. Hydraulic constraints on plant gas exchange. Agric. For. Meteorol. 104, 13-23. [63] Tardieu, F., 2016. Too many partners in root-shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control?New Phytol. 212, 954-963. [64] Trueba, S., Pan, R. H., Scoffoni, C., et al., 2019. Thresholds for leaf damage due to dehydration:declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry. New Phytol. 223, 134-149. [65] Tyree, M. T., Hammel, H. T., 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23, 267-282. [66] Vialet-Chabrand, S., Dreyer, E., Brendel, O., 2013. Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level. Plant Cell Environ. 36, 1529-1546. [67] Xiong, D. L., Nadal, M., 2020. Linking water relations and hydraulics with photosynthesis. Plant J. 101, 800-815. |