Plant Diversity ›› 2024, Vol. 46 ›› Issue (05): 661-670.DOI: 10.1016/j.pld.2023.10.001
• Articles • Previous Articles
Ling-Yun Wua,b, Shuang-Quan Huangb, Ze-Yu Tongb
Received:
2023-05-14
Revised:
2023-09-21
Published:
2024-09-07
Contact:
Shuang-Quan Huang,E-mail:hsq@mail.ccnu.edu.cn;Ze-Yu Tong,E-mail:zy_tong@mail.ccnu.edu.cn
Supported by:
Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains[J]. Plant Diversity, 2024, 46(05): 661-670.
Add to citation manager EndNote|Ris|BibTeX
Abdusalam, A., Liao, W.J., Zhang, Z.Q., et al., 2022. Pollinator shifts along an elevation gradient mediate different response in self-pollination in heterostylous Primula nivalis. J. Syst. Evol. 60, 186-195. Aizen, M.A., Harder, L.D., 2007. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology, 88, 271-281. Alekseyeva, E.S., Bureyko, A.L., 2000. Bee visitation, nectar productivity and pollen efficiency of common buckwheat. Fagopyrum 17, 77-80. Alonso, C., 2005. Pollination success across an elevation and sex ratio gradient in gynodioecious Daphne laureola. Am. J. Bot. 92, 1264-1269. Arroyo, M.T.K., Munoz, M.S., Henriquez, C., et al., 2006. Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecol. 30, 248-257. Asako, Y., Ujihara, A., Matano, T., 1980. Relation between the position of flowers and their flowering or fruiting in common buckwheat (Fagopyrum esculentum). Hokuriku Crop Sci. 15, 27-30. Ashman, T.L., Knight, T.M., Steets, J.A., et al., 2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85, 2408-2421. Barrett, S.C.H., 2019. ‘A most complex marriage arrangement’: recent advances on heterostyly and unresolved questions. New Phytol. 224, 1051-1067. Baumann, K., Keune, J., Wolters, V., et al., 2021. Distribution and pollination services of wild bees and hoverflies along an altitudinal gradient in mountain hay meadows. Ecol. Evol. 11, 11345-11351. Bellard, C., Leclerc, C., Leroy, B., et al., 2014. Vulnerability of biodiversity hotspots to global change. Global Ecol. Biogeogr. 23, 1376-1386. Bierzychudek, P., 1981. Pollinator limitation of plant reproductive effort. Am. Nat. 117, 838-840. Bjorkman, T., 2000. Buckwheat production. Guide to buckwheat production in the Northeast. Available online: http:/www.nysaes.cornell.edu/hort/faculty/bjorkman/buck/Buck.html. Bjorkman, T., 1995. The effect of pollen load and pollen grain competition on fertilization success and progeny performance in Fagopyrum esculentum. Euphytica 83, 47-52. Bjorkman, T., Pearson, K., 1995. The inefficiency of honeybees in the pollination of Buckwheat. In Proceedings of the 6th International Symposium of Buckwheat (pp. 453-462). Shinshu, Japan. Boufford, D.E., 2014. Biodiversity hotspot: China's Hengduan Mountains. Arnoldia 72, 24-35. Brito, V.L., Sazima, M., 2012. Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Syst. Evol. 298, 1271-1279. Cawoy, V., Deblauwe, V., Halbrecq, B., et al., 2006. Morph differences and honeybee morph preference in the distylous species Fagopyrum esculentum Moench. Int. J. Plant Sci. 167, 853-861. Cawoy, V., Halbrecq, B., Lutts, S., et al., 2007. Genesis of grain yield in buckwheat (Fagopyrum esculentum Moench) with a special attention to the low seed set. In: Advances in Buckwheat Research: Proceedings of the 10th International Symposium on Buckwheat (pp. 111-119). (Yangling, China). Cesaro, A.C., Thompson, J.D., 2004. Darwin's cross-promotion hypothesis and the evolution of stylar polymorphism. Ecol. Lett. 7, 1209-1215. Chauta-Mellizo, A., Campbell, S.A., Bonilla, M.A., et al., 2012. Effects of natural and artificial pollination on fruit and offspring quality. Basic Appl. Ecol. 13, 524-532. Conner, J.K., Rush, S., 1996. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 105, 509-516. Cosacov, A., Nattero, J., Cocucci, A.A., 2008. Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia linariifolia (Solanaceae). Ann. Bot. 102, 723-734. Costa, J., Torices, R., Barrett, S.C., 2019. Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae. New Phytol. 224, 1278-1289. Cuartas-Hernandez, S.E., Moreno-Betancur, D.J., Gibernau, M., Herrera-Palma, M., Hoyos-Serna, L. 2019. Contrasting patterns of floral size variation in two sympatric species of Anthurium along an elevation gradient in a tropical mountain forest. Int. J. Plant Sci. 180, 209-219. Darwin, C., 1877. The Different Forms of Flowers on Plants of the Same Species. London: John Murray. Delgado-Davila, R., Marten-Rodriguez, S., Huerta-Ramos, G., 2016. Variation in floral morphology and plant reproductive success in four Ipomoea species (Convolvulaceae) with contrasting breeding systems. Plant Biol. 18, 903-912. Fabbro, T., Korner, C., 2004. Altitudinal differences in flower traits and reproductive allocation. Flora 199, 70-81. Fan, Y., Jin, Y.N., Ding, M., et al., 2021. The complete chloroplast genome sequences of eight Fagopyrum species: insights into genome evolution and phylogenetic relationships. Front. Plant Sci. 12, 799904. Fang, Q., Huang, S.Q., 2013. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176-1185. Gang, Z., You, T., 1998. A primary study of increasing the production rate of buckwheat. In: Campbell, C., Przybylski, R. (Eds.), Current advances in buckwheat research (Vol II), Proceedings of the 7th International Symposium on Buckwheat (pp 18-23). Winnipeg, Manitoba, Canada. Gonzalez-Varo, J.P., Biesmeijer, J.C., Bommarco, R., et al., 2013. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524-530. Halbrecq, B., Romedenne, P., Ledent, J.F., 2005. Evolution of flowering, ripening and seed set in buckwheat (Fagopyrum esculentum Moench): quantitative analysis. Eur. J. Agron. 23, 209-224. Hargreaves, A.L., Weiner, J.L., Eckert, C.G., 2015. High-elevation range limit of an annual herb is neither caused nor reinforced by declining pollinator service. J. Ecol. 103, 572-584. Hegland, S.J., Nielsen, A., Lazaro, A., et al., 2009. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184-195. Inouye, D.W., Larson, B.M., Ssymank, A., et al., 2015. Flies and flowers III: ecology of foraging and pollination. J. Pollinat. Ecol. 16, 115-133. Jacquemart, A.L., Cawoy, V., Kinet, J.M., et al., 2012. Is buckwheat (Fagopyrum esculentum Moench) still a valuable crop today. Eur. J. Plant Sci. Biotech. 6, 1-10. Jacquemart, A.L., Gillet, C., Cawoy, V., 2007. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotech. 82, 104-108. Janzen, D. H., 1977. A note on optimal mate selection by plants. Am. Nat. 111, 365-371. Kalinova, J., Moudry, J., Curn, V., 2005. Yield formation in common buckwheat (Fagopyrum esculentum Moench). Acta Agronomica Hungarica 53, 283-291. Klomberg, Y., Tropek, R., Mertens, J.E., et al., 2022. Spatiotemporal variation in the role of floral traits in shaping tropical plant-pollinator interactions. Ecol. Lett. 25, 839-850. Knight, T.M., Steets, J.A., Vamosi, J.C., 2005. Pollen limitation of plant reproduction: pattern and process. Ann. Rev. Ecol. Evol. Syst. 36, 467-497. Koski, M.H., Ashman, T.L., 2015. An altitudinal cline in UV floral pattern corresponds with a behavioral change of a generalist pollinator assemblage. Ecology 96, 3343-3353. Kress, W.J., 1981. Sibling competition and evolution of pollen unit, ovule number, and pollen vector in angiosperms. Syst. Bot. 6, 101-112. Kunin, W.E., 1997. Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber. J. Ecol. 85, 225-234. Lara, C., Ornelas, J.F., 2008. Pollination ecology of Penstemon roseus (Plantaginaceae), an endemic perennial shifted toward hummingbird specialization?. Plant Syst. Evol. 271, 223-237. Maad, J., Armbruster, W.S., Fenster, C.B., 2013. Floral size variation in Campanula rotundifolia (Campanulaceae) along altitudinal gradients: patterns and possible selective mechanisms. Nordic J. Bot. 31, 361-371. Malcolm, J.R., Liu, C., Neilson, R.P., 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538-548. Memmott, J., Craze, P.G., Waser, N.M., et al., 2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 10, 710-717. Midgley, G.F., Hannah, L., Millar, D., 2002. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecol. Biogeo. 11, 445-451. Minachilis, K., Kougioumoutzis, K., Petanidou, T., 2021. Climate change effects on multi-taxa pollinator diversity and distribution along the elevation gradient of Mount Olympus, Greece. Ecol. Indic. 132, 108335. Mittermeier, R.A., Turner, W.R., Larsen, F.W., et al., 2011. Global biodiversity conservation: The critical role of hotspots. In: Zachos, F. E., Habel, J. C. (Eds.), Biodiversity hotspots (pp. 3-22). Springer. Morishita, T., Tetsuka, T., 2001. Year-to-year variation and varietal difference of agronomic characters of common buckwheat in the kyushu area (genetic resources and evaluation). Jpn. J. Crop. Sci. 70, 379-386. Mu, J., Peng, Y., Xi, X., et al., 2015. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Ann. Bot. 116, 899-906. Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. Naumkin, V.P., 1998. Increase of productivity of nectar and yield of buckwheat via flower-nectar flower creation. In: Campbell, C., Przybylski, R. (Eds.), Current advances in buckwheat research (Vol III), Proceedings of the 7th International Symposium on Buckwheat (pp. 1-5). Winnipeg, Manitoba, Canada. Nishihiro, J., Washitani, I., Thomson, J.D., et al., 2000. Patterns and consequences of stigma height variation in a natural population of a distylous plant, Primula sieboldii. Funct. Ecol. 14, 502-512. Ohlemuller, R., Anderson, B.J., Araujo, M.B., 2008. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol. Lett. 4, 568-572. Ohnishi, O., Konishi, T., 2001. Cultivated and wild buckwheat species in eastern Tibet. Fagopyrum 18, 3-8. Ohnishi, O., Matsuoka, Y., 1996. Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes Genetic Syst. 71, 383-390. Ollerton, J., 2017. Pollinator diversity: distribution, ecological function, and conservation. Ann. Rev. Ecol. Evol. Syst. 48, 353-376. Ollerton, J., Winfree, R., Tarrant, S., 2011. How many flowering plants are pollinated by animals? Oikos 120, 321-326. Parmesan, C., 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol. 13, 1860-1872. Pi, H.Q., Quan, Q.M., Wu, B., et al., 2021. Altitude-related shift of relative abundance from insect to sunbird pollination in Elaeagnus umbellata (Elaeagnaceae). J. Syst. Evol. 59, 1266-1275. Porcher, E., Lande, R., 2005. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J. Evol. Biol. 18, 497-508. Rodriguez-Rodriguez, M.C., Jordano, P., Valido, A., 2017. Functional consequences of plant-animal interactions along the mutualism-antagonism gradient. Ecology 98, 1266-1276. Settele, J., Bishop, J., Potts, S.G., 2016. Climate change impacts on pollination. Nat. Plants 2, 1-3. Sokal, R.R., Rohlf, F.J., 1981. Biometry. In: W.H. Freeman, San Francisco, CA 2nd (eds.). Song, B., Chen, G., Stocklin, J., et al., 2014. A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol. 203, 1109-1118. Stephenson, A.G., 1979. An evolutionary examination of the floral display of Catalpa speciosa (Bignoniaceae). Evolution 33, 1200-1209. Stephenson, A.G., 1981. Flower and fruit abortion: proximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 12, 253-279. Stone, J.L., Jenkins, E.G., 2008. Pollinator abundance and pollen limitation of a solanaceous shrub at premontane and lower montane sites. Biotropica 40, 55-61. Sun, S.G., Armbruster, W.S., Huang, S.Q., 2016. Geographic consistency and variation in conflicting selection generated by pollinators and seed predators. Ann. Bot. 118, 227-237. Taylor, D. P., Obendorf, R. L., 2001. Quantitative assessment of some factors limiting seed set in buckwheat. Crop Sci. 41, 1792-1799. Tong, Z. Y., Wu, L. Y., Feng, H. H., et al., 2023. New calculations imply that 90% of flowering plant species are animal-pollinated. Nat. Sci. Rev. nwad219. Totland, OE., 2001. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82, 2233-2244. Trew, B.T., Maclean, I.M., 2021. Vulnerability of global biodiversity hotspots to climate change. Global Ecol. Biogeo. 30, 768-783. Tsuji, K., Ohnishi, O., 2001. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaert.) populations revealed by AFLP analyses. Genes Genet. Syst. 76, 47-52. Vaughton, G., Ramsey, M., 2010. Floral emasculation reveals pollen quality limitation of seed output in Bulbine bulbosa (Asphodelaceae). Am. J. Bot. 97, 174-178. Waites, A.R., Agren, J., 2004. Pollinator visitation, stigmatic pollen loads and among-population variation in seed set in Lythrum salicaria. J. Ecol. 92, 512-526. Wang, H., Liu, H., Cao, G., et al., 2020. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701-710. Warren, S.D., Harper, K.T., Booth, G.M., 1988. Elevational distribution of insect pollinators. Am. Midl. Nat. 120, 325-330. Waser N.M., 1978. Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers. Ecology 59, 934-944. Waser, N.M., 1979. Pollinator availability as a determinant of flowering time in ocotillo (Fouquieria splendens). Oecologia 39, 107-121. Wheelwright, N.T., Dukeshire, E.E., Fontaine, J.B., et al., 2006. Pollinator limitation, autogamy and minimal inbreeding depression in insect-pollinated plants on a boreal island. Am. Midl. Nat. 155, 19-38. Willmer, P., 2012. Ecology: pollinator-plant synchrony tested by climate change. Curr. Biol. 22, R131-R132. Willson, MF., 1979. Sexual selection in plants. Am. Nat. 113, 777-790. Wu, L.Y., 2017. A study of evolution and adaptive significance of distyly in Fagopyrum species. Ph.D. dissertation, Wuhan University, Wuhan, Hubei Province, China. Wu, L.Y., Chang, F.F., Liu, S.J., et al., 2018. Heterostyly promotes compatible pollination in buckwheats: Comparisons of intraflower, intraplant, and interplant pollen flow in distylous and homostylous Fagopyrum. Am. J. Bot. 105, 108-116. Wu, L.Y., Huang, S.Q., 2018. Insect-pollinated cereal buckwheats: its biological characteristics and research progress. Biodiv. Sci. 26, 396-405. Wu, L.Y., Wang, B., Schoen, D.J., et al., 2017. Transitions from distyly to homostyly are associated with floral evolution in the buckwheat genus (Fagopyrum). Am. J. Bot. 104, 1232-1240. Xu, Y.W., Sun, L., Ma R., et al., 2023. Does pollinator dependence decrease along elevational gradients? Plant Divers. 45, 446-455. Yang, Y., Sun, H., 2009. The bracts of Saussurea velutina (Asteraceae) protect inflorescences from fluctuating weather at high elevations of the Hengduan Mountains, southwestern China. Arc. Antarc. Alp. Res. 41, 515-521. Yao, Y.F., Song, X.Y., Xie, G., et al., 2023. New insights into the origin of buckwheat cultivation in southwestern China from pollen data. New Phytol. 237, 2467-2477. Zhao, Z.C., Li, B.G., Zhou, M.D., 2007. Chinese bitter buckwheat and wild relatives resources. Sichuan Science and Technology Press, Chengdu, Sichuan Province, China. Zhou, W., Barrett, S.C.H., Wang, H., et al., 2015. Reciprocal herkogamy promotes disassortative mating in a distylous species with intramorph compatibility. New Phytol. 206, 1503-1512. Zych, M., Junker, R.R., Nepi, M., et al., 2019. Spatiotemporal variation in the pollination systems of a supergeneralist plant: is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators? Ann. Bot. 123, 415-428. |
[1] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America [J]. Plant Diversity, 2023, 45(04): 369-384. |
[2] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[3] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae) [J]. Plant Diversity, 2021, 43(01): 1-14. |
[4] | Kflay Gebrehiwot, Sebsebe Demissew, Zerihun Woldu, Mekbib Fekadu, Temesgen Desalegn, Ermias Teferi. Elevational changes in vascular plants richness, diversity, and distribution pattern in Abune Yosef mountain range, Northern Ethiopia [J]. Plant Diversity, 2019, 41(04): 220-228. |
[5] | Leonie Monks, Sarah Barrett, Brett Beecham, Margaret Byrne, Alanna Chant, David Coates, J. Anne Cochrane, Andrew Crawford, Rebecca Dillon, Colin Yates. Recovery of threatened plant species and their habitats in the biodiversity hotspot of the Southwest Australian Floristic Region [J]. Plant Diversity, 2019, 41(02): 59-74. |
[6] | DU Yan, HE Hua-Jie, ZHANG Zhi-Feng, YANG Ya-Juan, LI Lan-Yi, YANG Xiang-Yun. Correlation of Seed Mass with Elevation [J]. Plant Diversity, 2014, 36(01): 109-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||