Allu, A.D., Brotman, Y., Xue, G.P., et al., 2016. Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection. EMBO Rep. 17, 1578-1589. https://doi.org/10.15252/embr.201642197. Anderson FTLaMA, 2005. Defensins e components of the innate immune system in plants. Curr. Protein Pept. Sci. 6, 85-101. Chen, Y., Qiu, K., Kuai, B., et al., 2011. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis’Viridiflavus’). Physiol. Plantarum 142, 361-371. https://doi.org/10.1111/j.1399-3054.2011.01472.x. Fan, K., Bibi, N., Gan, S., et al., 2015. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. J. Exp. Bot. 66, 4669-4682. https://doi.org/10.1093/jxb/erv240. Frank, R., Am M-H, Dc B, 2001. Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237-245. Greco, M., Chiappetta, A., Bruno, L., et al., 2012. Arabidopsis ATNAP regulates fruit senescence. J. Exp. Bot. 63, 695-709. https://doi.org/10.1093/jxb/err313. Guo, Y., Gan, S., 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46, 601-612. https://doi.org/10.1111/j.1365-313X.2006.02723.x. He, X., Jiang, J., Wang, C.Q., et al., 2017. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. J. Integr. Plant Biol. 59, 275-287. https://doi.org/10.1111/jipb.12524. Huang, Q., Wang, Y., Li, B., et al., 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. 15, 268. https://doi.org/10.1186/s12870-015-0644-9. Kallenbach, M., Bonaventure, G., Gilardoni, P.A., et al., 2012. Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proc. Natl. Acad. Sci. U.S.A. 109, E1548-E1557. https://doi.org/10.1073/pnas.1200363109. Kou, X., Liu, C., Han, L., et al., 2016. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening. Mol.Genet. Genom. 291 (3), 1205-1217. https://doi.org/10.1007/s00438-016-1177-0. Kovalchuk, N., Wu, W., Bazanova, N., et al., 2019. Wheat wounding-responsive HDZip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins. Plant Mol. Biol. 101, 41-61. https://doi.org/10.1007/s11103-019-00889-9. Lacerda, A.F., Vasconcelos, E.A., Pelegrini, P.B., et al., 2014. Antifungal defensins and their role in plant defense. Front. Microbiol. 5, 116. https://doi.org/10.3389/fmicb.2014.00116. LaMondia, J.A., 2001. Outbreak of brown spot of tobacco caused by Alternaria alternata in Connecticut and Massachusetts. Plant Dis. 85, 230. https://doi.org/10.1094/PDIS.2001.85.2.230B. Li, W., Li, X., Chao, J., et al., 2018. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence. Front. Plant Sci. 9, 1900.https://doi.org/10.3389/fpls.2018.01900. Li, Y., Sorefan, K., Hemmann, G., Bevan, M.W., 2004. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol. 136, 3616-3627. https://doi.org/10.1104/pp.104.053173. Li, S., Zhang, J., Liu, H., et al., 2019. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. J. Exp. Bot. https://doi.org/10.1093/jxb/erz481. Nakashima, K., Takasaki, H., Mizoi, J., et al., 2012. NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819, 97-103. https://doi.org/10.1016/j.bbagrm.2011.10.005. Nakashima, K., Tran, L.S., Van Nguyen, D., et al., 2007. Functional analysis of a NACtype transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51 (4), 617-630. https://doi.org/10.1111/j.1365-313X.2007.03168.x. Ndamukong, I., Abdallat, A.A., Thurow, C., et al., 2007. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50 (1), 128-139. https://doi.org/10.1111/j.1365-313X.2007.03039.x. Pre, M., Atallah, M., Champion, A., et al., 2008. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense.Plant Physiol. 147 (3), 1347-1357. https://doi.org/10.1104/pp.108.117523. Ren, T., Wang, J., Zhao, M., et al., 2018. Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. Planta 247 (1), 53-68. https://doi.org/10.1007/s00425-017-2770-0. Saedler, R., Baldwin, I.T., 2004. Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. J. Exp. Bot. 55, 151-157. https://doi.org/10.1093/jxb/erh004. Sathoff, A.E., Samac, D.A., 2019. Antibacterial activity of plant defensins. Mol. Plant Microbe Interact. 32 (5), 507-514. https://doi.org/10.1094/MPMI-08-18-0229-CR. Seok, H.-Y., Woo, D.-H., Nguyen, L.V., et al., 2016. Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response. Planta 245(2), 329-341. https://doi.org/10.1007/s00425-016-2609-0. Shen, G., Pang, Y., Wu, W., et al., 2005. Molecular cloning, characterization and expression of a novel jasmonate-dependent defensin gene from Ginkgo biloba. J. Plant Physiol. 162 (10), 1160-1168. https://doi.org/10.1016/j.jplph.2005.01.019. Song, N., Ma, L., Wang, W., et al., 2019. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J. Exp. Bot. 70 (20), 5895-5908. https://doi.org/10.1093/jxb/erz327. Sun, H., Hu, X., Ma, J., Hettenhausen, C., Wang, L., Sun, G., Wu, J., Wu, J., 2014a. Requirement of ABA signalling-mediated stomatal closure for resistance of wild tobacco to Alternaria alternata. Plant Pathol. 63, 1070-1077. https://doi.org/10.1111/ppa.12181. Sun, H., Song, N., Ma, L., et al., 2017. Ethylene signalling is essential for the resistance of Nicotiana attenuata against Alternaria alternata and phytoalexin scopoletin biosynthesis. Plant Pathol. 66, 277-284. https://doi.org/10.1111/ppa.12568. Sun, H., Wang, L., Zhang, B., Ma, J., Hettenhausen, C., Cao, G., Sun, G., Wu, J., Wu, J., 2014b. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. J. Exp. Bot. 65 (15), 4305-4315. https://doi.org/10.1093/jxb/eru203. Thevissen, K., Ferket, K.K., Francois, I.E., et al., 2003. Interactions of antifungal plant defensins with fungal membrane components. Peptides 24 (11), 1705-1712.https://doi.org/10.1016/j.peptides.2003.09.014. van der Weerden, N.L., Hancock, R.E., Anderson, M.A., 2010. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J. Biol. Chem. 285 (48), 37513-37520. https://doi.org/10.1074/jbc.M110.134882. van der Weerden, N.L., Lay, F.T., Anderson, M.A., 2008. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem. 283 (21), 14445-14452. https://doi.org/10.1074/jbc.M709867200. von Dahl, C.C., Winz, R.A., Halitschke, R., et al., 2007. Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J. 51 (2), 293-307. https://doi.org/10.1111/j.1365-313X.2007.03142.x. Vroemen, C.W., Mordhorst, A.P., Albrecht, C., et al., 2003. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15 (7), 1563-1577. https://doi.org/10.1105/tpc.012203. Weaver, L.M., Amasino, R.M., 2001. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol. 127(3), 876-886. https://doi.org/10.1104/pp.010312. Xu, Z., Song, N., Ma, L., et al., 2018. NaPDR1 and NaPDR1-like are essential for the resistance of Nicotiana attenuata against fungal pathogen Alternaria alternata. Plant Divers. 40, 68-73. https://doi.org/10.1016/j.pld.2018.01.001. Yamaguchi, M., Ohtani, M., Mitsuda, N., et al., 2010. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22, 1249-1263. https://doi.org/10.1105/tpc.108.064048. Yan, H., Zhang, A., Ye, Y., et al., 2017. Genome-wide survey of switchgrass NACs family provides new insights into motif and structure arrangements and reveals stress-related and tissue-specific NACs. Sci. Rep. 7, 3056. https://doi.org/10.1038/s41598-017-03435-z. Yang, J., Worley, E., Udvardi, M., 2014. A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell 26, 4862-4874. https://doi.org/10.1105/tpc.114.133769. Zhang, K., Gan, S.S., 2012. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol. 158, 961-969. https://doi.org/10.1104/pp.111.190876. |