Bässler, C., Cadotte, M.W., Beudert, B., et al., 2016. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689-698. Baur, B., Meier, T., Baur, A., et al., 2014. Terrestrial gastropod diversity in an alpine region:disentangling effects of elevation, area, geometric constraints, habitat type and land-use intensity. Ecography 37 (4), 390-401. Bhatta, K.P., Grytnes, J.-A., Vetaas, O.R., 2018. Scale sensitivity of the relationship between alpha and gamma diversity along an alpine elevation gradient in central Nepal. J. Biogeogr. 45 (4), 804-814. Brehm, G., Colwell, R.K., Kluge, J., 2007. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecol. Biogeogr. 16 (2), 205-219. Calba, S., Maris, V., Devictor, V., 2014. Measuring and explaining large-scale distribution of functional and phylogenetic diversity in birds:separating ecological drivers from methodological choices. Global Ecol. Biogeogr. 23 (6), 669-678. CardelÚS, C.L., Colwell, R.K., Watkins, J.E., 2006. Vascular epiphyte distribution patterns:explaining the mid-elevation richness peak. J. Ecol. 94 (1), 144-156. Chen, S., Meng, L., El-Demerdash, F.M., et al., 2020. Review of compounds and pharmacological effects of Delphinium. J. Chem. 2020, 9375619. Chen, C., Zhu, Z., Li, Y., et al., 2016. Effects of interspecific trait dissimilarity and species evenness on the relationship between species diversity and functional diversity in an alpine meadow. Acta Ecol. Sin. 36 (3), 661-674. Chen, L., Dong, H., Peng, H., 2013. Diversity and distribution of higher plants in Yunnan, China. Biodivers. Sci. 21 (3), 359-363. Chen, Z., He, K., Cheng, F., et al., 2017. Patterns and underlying mechanisms of nonvolant small mammal richness along two contrasting mountain slopes in southwestern China. Sci. Rep. 7 (1), 13277. Colwell, R.K., 2008. RangeModel:tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31 (1), 4-7. https://doi.org/10.1111/j.2008.0906-7590.05347.x. Colwell, R.K., Gotelli, N.J., Ashton, L.A., et al., 2016. Midpoint attractors and species richness:modelling the interaction between environmental drivers and geometric constraints. Ecol. Lett. 19 (9), 1009-1022. Colwell, R.K., Lees, D.C., 2000. The mid-domain effect:geometric constraints on the geography of species richness. Trends Ecol. Evol. 15 (2), 70-76. Colwell, R.K., Rahbek, C., Gotelli, Nicholas J., 2004. The mid-domain effect and species richness patterns:what have we learned so far? Am. Nat. 163 (3), E1-E23. Currie, D.J., Kerr, J.T., 2008. Tests of the mid-domain hypothesis:a review of the evidence. Ecol. Monogr. 78 (1), 3-18. Dıaz, S., Cabido, M., 2001. Vive la difference:plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16 (11), 646-655. Ding, W., Ree, R.H., Spicer, R.A., et al., 2020. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369 (6503), 578-581. Epstein, J.M., Pine III, W.E., Romagosa, C.M., et al., 2018. State- and regional-scale patterns and drivers of freshwater fish functional diversity in the southeastern USA. Trans. Am. Fish. Soc. 147 (6), 1179-1198. Feng, J., Wang, X., Fang, J., 2006a. Altitudinal pattern of species richness and test of the rapoport's rules in the drung river area, southwest China. Acta Sci. Nauralium Univ. Pekin. 42 (4), 515-520. Feng, J., Wang, X., Li, J., et al., 2006b. Effects of area and mid-domain effect on altitudinal pattern of seed plants richness in Lijiang, Yunnan, China. Biodivers.Sci. 14 (2), 107-113. Fu, C., Hua, X., Li, J., et al., 2006. Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China:geometric constraints, area and climate effects. Ecography 29 (6), 919-927. Fu, C., Wang, J., Pu, Z., et al., 2007. Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China. Biodivers. Conserv. 16 (3), 707-726. Gao, L.-F., Wang, Y.-J., Zhang, H.-Y., et al., 2020. Insect pollinators show constancy for different flower traits between the most- and less-preferred plants:a case study of the long-proboscid tangle-veined fly. Ecol. Entomol. 45 (5), 978-987. Grime, J.P., 2006. Trait convergence and trait divergence in herbaceous plant communities:mechanisms and consequences. J. Veg. Sci. 17 (2), 255-260. Hansen, D.M., Van der Niet, T., Johnson, S.D., 2012. Floral signposts:testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness.Proc. Biol. Sci. 279 (1729), 634-639. Hanz, D.M., Böhning-Gaese, K., Ferger, S.W., et al., 2019. Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. J. Biogeogr. 46 (2), 291-303. Hao, M., Zhang, C., Zhao, X., et al., 2018. Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecol. Evol. 8 (5), 2395-2406. Higgins, C.L., 2010. Patterns of functional and taxonomic organization of stream fishes:inferences based on a, b, and g diversities. Ecography 33 (4), 678-687. Ishii, H.S., Harder, L.D., 2006. The size of individual Delphinium flowers and the opportunity for geitonogamous pollination. Funct. Ecol. 20 (6), 1115-1123. Jarzyna, M.A., Jetz, W., 2018. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9 (1), 2565. Kessler, M., 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecol. 149 (2), 181-193. Kessler, M., 2002. The elevational gradient of Andean plant endemism:varying influences of taxon-specific traits and topography at different taxonomic levels.J. Biogeogr. 29 (9), 1159-1165. Kessler, M., Krömer, T., Kluge, J., et al., 2009. Elevational gradients of species richness derived from local field surveys versus ‘mining’ of archive data. In:Spehn, Korner, C. (Eds.), Data Mining for Global Trends in Mountain Biodiversity. CRC Press/Taylor & Francis, Boca Raton, FL, pp. 57-63. https://doi.org/10.1201/9781420083705. Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91 (1), 299-305. Li, B., 1987. On the boundaries of the hengduan mountains. Mt. Res. 5 (2), 74-82. Li, B., 1989. Geomorphologic regionalization of the hengduan mountains region. Mt.Res. 7 (1), 13-20. Li, X., Zhu, X., Niu, Y., et al., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Systemat. Evol. 52 (3), 280-288. Lopez, B.E., Urban, D., White, P.S., 2018. Testing the effects of four urbanization filters on forest plant taxonomic, functional, and phylogenetic diversity. Ecol.Appl. 28 (8), 2197-2205. Macior, L.W., 1975. The pollination ecology of Delphinium tricorne (Ranunculaceae).Am. J. Bot. 62 (10), 1009-1016. Manish, K., Pandit, M.K., Telwala, Y., et al., 2017. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya. J. Plant Res. 130 (5), 829-844. Mao, L., Chen, S., Zhang, J., et al., 2018. Altitudinal patterns of maximum plant height on the Tibetan Plateau. J. Plant Ecol. 11 (1), 85-91. Matsuoka, S., Ogisu, Y., Sakoh, S., et al., 2019. Taxonomic, functional, and phylogenetic diversity of fungi along primary successional and elevational gradients near Mount Robson, British Columbia. Polar Sci. 21, 165-171. McCain, C.M., 2004. The mid-domain effect applied to elevational gradients:species richness of small mammals in Costa Rica. J. Biogeogr. 31 (1), 19-31. McCain, C.M., 2009. Global analysis of bird elevational diversity. Global Ecol. Biogeogr. 18 (3), 346-360. McCain, C.M., 2010. Global analysis of reptile elevational diversity. Global Ecol.Biogeogr. 19 (4), 541-553. Meng, F., Shi, P., Yan, W., et al., 2013. The function of cushion plants in alpine ecosystems:patterns and mechanisms. Chin. J. Appl. Ecol. 19 (4), 561-568. Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403 (6772), 853-858. O'Brien, E.M., 2006. Biological relativity to watereenergy dynamics. J. Biogeogr. 33(11), 1868-1888. Pegg, M., Taylor, R., 2007. Fish species diversity among spatial scales of altered temperate rivers. J. Biogeogr. 34 (3), 549-558. Pillar, V.D., Blanco, C.C., Müller, S.C., et al., 2013. Functional redundancy and stability in plant communities. J. Veg. Sci. 24 (5), 963-974. Pillar, V.D., Duarte, L.d.S., Sosinski, E.E., et al., 2009. Discriminating traitconvergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20 (2), 334-348. Qian, H., Deng, T., Beck, J., et al., 2018. Incomplete species lists derived from global and regional specimen-record databases affect macroecological analyses:a case study on the vascular plants of China. J. Biogeogr. 45 (12), 2718-2729. R Core Team, 2019. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Rahbek, C., 1995. The elevational gradient of species richness:a uniform pattern?Ecography 18 (2), 200-205. Rahbek, C., 2005. The role of spatial scale and the perception of large-scale speciesrichness patterns. Ecol. Lett. 8 (2), 224-239. Raine, E.H., Gray, C.L., Mann, D.J., et al., 2018. Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecol. Evol. 8 (17), 8686-8696. Shen, Z., Liu, Z., Wu, J., 2004. Altitudinal pattern of flora on the eastern slope of Mt.Gongga. Biodivers. Sci. 12 (1), 89-98. Shiono, T., Kusumoto, B., Maeshiro, R., et al., 2015. Climatic drivers of trait assembly in woody plants in Japan. J. Biogeogr. 42 (6), 1176-1186. Šímová, I., Violle, C., Svenning, J.-C., et al., 2018. Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J. Biogeogr. 45 (4), 895-916. Steinbauer, M.J., Field, R., Grytnes, J.-A., et al., 2016. Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecol.Biogeogr. 25 (9), 1097-1107. Stiegel, S., Kessler, M., Getto, D., et al., 2011. Elevational patterns of species richness and density of rattan palms (Arecaceae:Calamoideae) in Central Sulawesi, Indonesia. Biodivers. Conserv. 20 (9), 1987-2005. Storch, D., Davies, R.G., Zajíček, S., et al., 2006. Energy, range dynamics and global species richness patterns:reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9 (12), 1308-1320. Sun, H., Zhang, J., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39 (4), 161-166. Sun, L., Luo, J., Qian, L., et al., 2020. The relationship between elevation and seedplant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Global Ecol. Conserv. 23, e01053. Swenson, N.G., Enquist, B.J., Pither, J., et al., 2012. The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecol.Biogeogr. 21 (8), 798-808. Tang, Z., Qiao, X., Fang, J., 2009. Speciesearea relationship in biological communities. Biodivers. Sci. 17 (6), 549-559. Vetaas, O.R., Grytnes, J.A., 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol.Biogeogr. 11 (4), 291-301. Villéger, S., Mason, N.W.H., Mouillot, D., 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8), 2290-2301. Violle, C., Navas, M.L., Vile, D., et al., 2007. Let the concept of trait be functional.Oikos 116 (5), 882-892. Waddington, K.D., 1981. Factors influencing pollen flow in bumblebee-pollinated Delphinium virescens. Oikos 37 (2), 153-159. Wang, F., 1981. A review of the chemical studies on the alkaloids from Aconitum and Delphinium plants. Acta Pharm. Sin. 16 (12), 943-959. Wang, Y., Qi, R., Yang, Y., et al., 2018. Effects of altitude on the reproductive characteristics of Saussurea przewalskii at the eastern margin of the Tibetan Plateau, China. Chin. J. Appl. Ecol. 29 (1), 68-74. Wang, W., Svetlana, N.Z., 2001. Flora of China. Wang, Y., Jin, J., Cao, J., et al., 2016. The response of Saussurea dzeurensis fruiting resource allocation to differences in elevation. Acta Ecol. Sin. 36 (18), 5790-5797. Wang, Y., Li, M., Li, S., et al., 2012a. Variation of reproductive allocation along elevations in Saussurea stella on east Qinghai-Xizang plateau. Chinese J. Plant Ecol. 36 (11), 1145-1153. Wang, Y., Liu, Q., Pei, Z., et al., 2012b. Correlation between altitude and reproductive allocation in three Saussurea species on China's Qinghai-Tibetan Plateau. Chinese J. Plant Ecol. 36 (1), 39-46. Wang, Z., Tang, Z., Fang, J., 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Divers. Distrib. 13 (6), 845-854. Wu, Y., Colwell, R.K., Rahbek, C., et al., 2013a. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains.J. Biogeogr. 40 (12), 2310-2323. Wu, Y., Lei, F., 2013. Species richness patterns and mechanisms along the elevational gradients. Chin. J. Zool. 48 (5), 797-807. Wu, Y., Yang, Q., Wen, Z., et al., 2013b. What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography 36 (2), 185-196. Xing, Y., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. Unit. States Am. 114 (17), E3444-E3451. Yang, Y., Chen, J.G., Song, B., et al., 2019. Advances in the studies of plant diversity and ecological adaptation in the subnival ecosystem of the Qinghai-Tibet Plateau. Chin. Sci. Bull. 64 (27), 2856-2864. Yin, T., Cai, L., Ding, Z., 2020. An overview of the chemical constituents from the genus Delphinium reported in the last four decades. RSC Adv. 10 (23), 13669-13686. Yuan, R., Yang, S., Wang, B., 2008. Study on the altitudinal pattern of vegetation distribution along the eastern slope of Cangshan Mountain, Yunnan, China.J. Yunnan Univ. 30 (3), 318-325. Zhang, D., Boufford, D.E., Ree, R.H., et al., 2009a. The 29°N latitudinal line:an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China. Nord. J. Bot. 27 (5), 405-412. Zhang, D., Sun, H., 2009. Research advances in altitudinal gradient distribution pattern of plant species richness at a broad spatial scale. J. SW. For. Univ. 29 (2), 74-80. Zhang, D., Zhang, Y., Boufford, D.E., et al., 2009b. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biodivers. Conserv. 18 (3), 699-716. Zhang, R., Zheng, D., Yang, Q., et al., 1997. Physical Geography of Hengduan Mountains. Science Press, Beijng. Zhang, Y., 1998. Several issues concerning vertical climate of the Hengduan Mountains. Resour. Sci. 20 (3), 14-21. Zhu, Y., Siegwolf, R.T., Durka, W., et al., 2010. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients.Oecologia 162 (4), 853-863. |