[1] Axelrod, D.I., 1956. Mio-Pliocene floras from west central Nevada. Univ. Calif. Publ. Geol. Sci. 33, 1-322. [2] Axelrod, D.I., 1992. The middle Miocene Pyramid flora of western Nevada. Univ. Calif. Publ. Geol. Sci. 137, 1-50. [3] Axelrod, D.I., 1995. The Miocene Purple mountain flora of western Nevada. Univ. Calif. Publ. Geol. Sci. 139, 1-98. [4] Barron, E., Averyanova, A., Kvacek, Z., et al., 2017. The fossil history of Quercus. In: Gil-Pelegrin, E., Peguero-Pina, J.J., Sancho-Knapik, D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L., Tree Physiology. Springer, Cham, Switzerland, pp. 39-105. [5] Becker, H.F., 1969. Fossil plants of the Tertiary Beaverhead basins in southwestern Montana. Paleontogr. Abt. B. 127, 1-142. [6] Colani, M.M., 1917. Essai sur Les floras Tertary du Tonkin. Bull. Serv. Geol. Indoch. 37-142. [7] Deng, M., Jiang X.L., Hipp, A.L. et al., 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogenet. Evol. 119, 170-181. [8] Denk, T., Grimm, G.W., Manos, P.S., et al., 2017. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns, In: Gil-Pelegrin, E., Peguero-Pina, J.J., Sancho-Knapik, D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L., Tree Physiology. Springer, Cham, Switzerland, pp. 13-38. [9] Escudero, A., Mediavilla, S., Olmo, M. et al., 2017. Coexistence of deciduous and evergreen oak species in Mediterranean environments: costs associated with the leaf and root traits of both habits. In: Gil-Pelegrin, E., Peguero-Pina, J.J., Sancho-Knapik, D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L., Tree Physiology. Springer, Cham, Switzerland, pp. 195-237. [10] Gourbet, L., Leloup, P.H., Paquette, J.L., et al., 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophys 700-701, 162-179. [11] Graham, A., 1965. The Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. Kent State Univ. Bull. 53, 1-147. [12] Guo, S.X., 1978. Pliocene floras of western Sichuan. Acta Palaeontol. Sin. 17, 343-350. [13] Guo, S.X., 2011. The late Miocene Bangmai flora from Lincang County of Yunnan, southwestern China. Acta Palaeontol. Sin. 50, 353-408. [14] Hori, J., 1976. On the Study of the Kobe Flora from the Kobe Group (Late Miocene Age), Rokko Highland. Nihon Chibaku-kaikan, Kyoto. [15] Hori, J., 1987. Plant Fossils from the Miocene Kobe Flora. Hyogo Biology Society, Fukusaki. [16] Hu, Q., Xing, Y.W., Hu, J.J., et al., 2014. Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene. Chin. Sci. Bull. 59, 310-319. [17] Huang, C.C., Chang, Y.T., Bartholomew, B., 1999. Fagaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China. Science Press, Missouri Botanical Garden Press, Beijing, St. Louis, pp. 380–400. [18] Huzioka, K., 1963. The Utto flora of northern Honshu. In: Geological Survey of Japan ed. The Collaborating Association to Commemorate the 80th Anniversary of the Geological Survey of Japan Tertiary Floras of Japan: Miocene Floras. Kawasaki: Geological Survey of Japan. pp.153-216. [19] Huzioka, K., Takahashi, E., 1970. The Eocene flora of the Ubecoal-field, Southwest Honshu, Japan. J. Min. Coll. Akita Univ. A 4, 1-88. [20] Ishida, S., 1970. The Noroshi flora of Note peninsula, central Japan. Memoirs of the Faculty of Science, Kyoto University. Series of Citation Geology and Mineralogy, vol. 37, 1-22. [21] Jones, J.H., 1986. Evolution of the Fagaceae. The implications of foliar features. Ann. Mo. Bot. Gard. 73, 228-275. [22] Jia, H., Jin, P.H., Wu, J.Y., et al., 2015. Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Rev. Palaeobot. Palynol. 219, 132-146. [23] Jia, H., Sun, B.N., Li, X.C., et al. 2009. Microstructures of one species of Quercus from the Neogene in eastern Zhejiang and its palaeoenvironmental indication. Ear. Sci. Front. 16, 79-90. [24] Kryshtofovich, A., 1926. Contribution to the Tertiary flora of Kwannonzawa, Prov. Echigo, Japan. Annu. Russ. Paleontol. Sci. 6, 1-24. [25] Lakhanpal, R.N., Maheshwari, H.K., Awasthi, N., 1976. A Catalogue of Indian Fossil Plants. Birbal Sahni Institute of Palaeobotany, Lucknow, p. 209. [26] Li, H.M., Guo, S.X., 1982. Angiospermae. In: Nanjing Institute of Geology and Mineral Resourses (Ed.), Paleontological Atlas of East China, Part 3. Volume of Mesozoic and Cenozoic. Geological Publishing House, Beijing, pp. 294-316. [27] Liu, X.Y., Xu, S.L., Jin, J.H., 2019. An early Oligocene fossil acorn, associated leaves and pollen of the ring-cupped oaks (Quercus subg. Cyclobalanopsis) from Maoming Basin, South China. J. Syst. Evol. 57, 153-168. [28] Liu, X.Y., Song, H.Z., Jin, J.H., 2020. Diversity of Fagaceae on Hainan Island of South China during the middle Eocene: implications for phytogeography and paleoecology. Front. Ecol. Evol. 8, 255. [29] Manchester, S.R., 1994. Fruits and seeds of the middle Eocene nut Beds flora, Clarno Formation, Oregon. Palaeontogr. Am. 58, 1-205. [30] Manos, P.S., Doyle, J.J., Nixon, K.C., 1999. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogenet. Evol. 12, 333-349. [31] Manos, P.S., Hipp, A.L., 2021. An updated infrageneric classification of the North American Oaks (Quercus Subgenus Quercus): review of the contribution of phylogenomic data to biogeography and species diversity. Forests 12, 786. [32] Manos, P.S., Stanford, A.M., 2001. The historical biogeography of Fagaceae: tracking the Tertiary history of temperate and subtropical forests of the Northern Hemisphere. Int. J. Plant Sci. 162, S77-S93. [33] Nixon, K.C., 1997. Quercus. In: Committee Flora of North America Editorial (Ed.), Flora of North America North of Mexico. Oxford University Press, New York, pp. 445-447. [34] Palamarev, E., Kitanov, G., 1988. Fossil macroflora of the Beli Brjag coal basin. In: Velchev, V., Markova, M., Palamarev, E., Vanev, S. (Eds.), 100th Anniversary of the National Academy A. Stojanov, Bulgarian Academy of Sciences, Sofia, pp. 183-206. [35] Palamarev, E., Tsenov, B., 2004. Genus Quercus in the late Miocene flora of Baldevo formation (southwest Bulgaria): taxonomical composition and palaeoecology. Phytol. Balc. 10, 147-156. [36] Quan, C., Fu, Q.Y., Shi, G.L., et al., 2016. First Oligocene mummified plant Lagerstatte at the low latitudes of East Asia. Sci. China Earth Sci. 59, 445-448. [37] Suc, J.-P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307 (5950), 429–432. [38] Takhtajan, A., 1982. Magnoliophyta Fossilia URSS, Ulmaceae-Betulaceae. St. Petersburg: Russian Academy of Sciences. [39] Tanai, T., 1995. Fagaceous leaves from the Paleogene of Hokkaido, Japan. Bull. Natl. Sci. Mus. Tokyo C. 21, 71-101. [40] Tanai, T., Uemura, K., 1991. The Oligocene Noda flora from the Yuya-wan area of the western end of Honshu, Japan. Part 1. Bull. Natl. Sci. Mus. Tokyo C. 17, 57-80. [41] Tao, J.R., Zhou, Z.K., Liu, Y.S., 2000. The Evolution of the Late Cretaceous-Cenozoic Floras in China. Science Press, Beijing. [42] Tao, J.R., Chen, M.H., 1983. Cenozoic flora of Lincang in the southern Hengduan Mountains. In: Team of Comprehensive Scientific Expedition to the Qinghai-Xizang (Tibet) Plateau, Chinese Academy of Sciences (Ed.), Studies in Qinghai-Xizang (Tibet) Plateau - Special Issue of Hengduan Mountains Scientific Expedition (I). Kunming: Yunnan People's Publishing House, pp. 74-95. [43] Uemura, K., Doi, E., Takahashi, F., 1999. Plant megafossil assemblage from the Kiwado formation (Oligocene) from Ouchiyama-kami in Yamaguchi Pref., western Honshu, Japan. Bull. Mine City Mus. 15, 1-59. [44] Writing Group of Cenozoic Plants of China (WGCPC), 1978. Cenozoic Plants from China: Fossil Plants of China, vol. vol. 3. Beijing: Science Press. [45] Xing, Y.W., Hu, J.J., Jacques, FMB., et al., 2013. A new Quercus species from the Upper Miocene of southwestern China and its ecological significance. Rev. Palaeobot. Palynol. 193, 99-109. [46] Xu, H., Su, T., Zhang, S.T., et al.,2016. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 442, 61-71. [47] Yabe, A., 2008. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bull. Geol. Surv. Jpn., 59, 397-413. [48] Zhang, J.H., 1978. Paleobotany. In: Working Group of Guizhou Stratigraphic Paleontology (Ed.), Paleontological Atlas of Southwest China, Part 2, Volume of Guizhou Province. Geological Publishing House, Beijing, pp. 458-491. [49] Zhao, Z.R., 1981. The vertebrate fossils and Lower Tertiary from Nanning Basin, Guangxi. Verteb. PalAsia. 19, 218–227. [50] Zhao, Z.R., 1983. A new species of Anthracothere from Nanning Basin, Guangxi. Verteb. PalAsia. 21, 266–270. [51] Zhao, Z., 1993. New anthracothere materials from the Paleogene of Guangxi. Verteb. PalAsia. 31, 13-190. [52] Zhou, Z.K., 1993. The fossil history of Quercus. Acta Bot. Yunnanica 15, 21-33. [53] Zhou, Z.K., 1996. Studies on Dryophyllum complex from China and its geological and systematic implications. Acta Bot. Sin. 38, 666-671. |