Plant Diversity ›› 2019, Vol. 41 ›› Issue (03): 153-165.DOI: 10.1016/j.pld.2019.04.006
Pratikshya Kandela, Nakul Chettria, Ram P. Chaudharyb, Hemant Kumar Badolac,a, Kailash S. Gairac, Sonam Wangchukd, Namgay Bidhad, Yadav Upretyb, Eklabya Sharmaa
收稿日期:
2018-01-08
修回日期:
2019-04-21
出版日期:
2019-06-25
发布日期:
2019-08-15
通讯作者:
Nakul Chettri,E-mail address:Nakul.Chettri@icimod.org
Pratikshya Kandela, Nakul Chettria, Ram P. Chaudharyb, Hemant Kumar Badolac,a, Kailash S. Gairac, Sonam Wangchukd, Namgay Bidhad, Yadav Upretyb, Eklabya Sharmaa
Received:
2018-01-08
Revised:
2019-04-21
Online:
2019-06-25
Published:
2019-08-15
Contact:
Nakul Chettri,E-mail address:Nakul.Chettri@icimod.org
摘要: The Kangchenjunga Landscape (KL) in the Eastern Himalayas is a transboundary complex shared by Bhutan, India, and Nepal. It forms a part of the ‘Himalayan Biodiversity Hotspot’ and is one of the biologically richest landscapes in the Eastern Himalayas. In this paper, we use secondary information to review and consolidate the knowledge on the flora of the KL. We reviewed 215 journal articles, analysed the history of publications on the flora of the KL, their publication pattern in terms of temporal and spatial distribution and key research areas. Our review shows that the landscape has a long history of botanical research that dates back to the 1840s and progressed remarkably after the 1980s. Most of the studies have been carried out in India, followed by Nepal and Bhutan. The majority of these have been vegetation surveys, followed by research on ethnobotanical aspects and Non-Timber Forest Products (NTFPs). This paper describes the forest types and characteristic species of the KL and details the species richness, diversity and dominant families of seed plants. A total of 5198 species of seed plants belonging to 1548 genera and 216 families have been recorded from the landscape, including 3860 dicots, 1315 monocots and 23 gymnosperms. Among families, Orchidaceae is the most diversely represented family in terms of species richness. This paper also draws attention to the threatened and endemic flora of the KL, including 44 species that are threatened at national and global level and 182 species that are endemic. Finally, the paper reviews the major challenges facing the KL, the conservation efforts and practices that are currently in place and recommends systematic and comprehensive floral surveys, particularly long-term data collection and monitoring and transboundary collaboration, to address the existing knowledge gaps on floral diversity of the KL.
Pratikshya Kandel, Nakul Chettri, Ram P. Chaudhary, Hemant Kumar Badola, Kailash S. Gaira, Sonam Wangchuk, Namgay Bidha, Yadav Uprety, Eklabya Sharma. Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas[J]. Plant Diversity, 2019, 41(03): 153-165.
Pratikshya Kandel, Nakul Chettri, Ram P. Chaudhary, Hemant Kumar Badola, Kailash S. Gaira, Sonam Wangchuk, Namgay Bidha, Yadav Uprety, Eklabya Sharma. Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas[J]. Plant Diversity, 2019, 41(03): 153-165.
日期 Date (month-day) | 降水量 Precipitation (mm) | 降水强度 Precipitation intensity (mm·h-1) | δD (‰) | 月平均δD (平均值±标准偏差) Monthly average δD (‰) (mean ± SD) |
---|---|---|---|---|
6-9 | 6.6 | 0.2 | -54.01 | -48.20 ± 46.20 |
6-14 | 4.2 | 1.0 | -5.89 | -48.20 ± 46.20 |
7-8 | 15.6 | 1.2 | -10.01 | -42.80 ± 26.50 |
7-12 | 2.0 | 0.2 | -38.47 | -42.80 ± 26.50 |
8-8 | 6.2 | 3.6 | -38.10 | -50.84 ± 32.52 |
表1 6次降水事件的特征
Table 1 Features of six precipitation events
日期 Date (month-day) | 降水量 Precipitation (mm) | 降水强度 Precipitation intensity (mm·h-1) | δD (‰) | 月平均δD (平均值±标准偏差) Monthly average δD (‰) (mean ± SD) |
---|---|---|---|---|
6-9 | 6.6 | 0.2 | -54.01 | -48.20 ± 46.20 |
6-14 | 4.2 | 1.0 | -5.89 | -48.20 ± 46.20 |
7-8 | 15.6 | 1.2 | -10.01 | -42.80 ± 26.50 |
7-12 | 2.0 | 0.2 | -38.47 | -42.80 ± 26.50 |
8-8 | 6.2 | 3.6 | -38.10 | -50.84 ± 32.52 |
土壤深度 Soil depth (cm) | 遮雨处理 Rain-exclusion treatment | |||||
---|---|---|---|---|---|---|
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -151.46 ± 17.39a | -109.92 ± 30.98a | -93.19 ± 35.33a | -82.37 ± 6.97a | -82.53 ± 18.76a | -85.90 ± 4.45a |
5-10 | -140.87 ± 27.79a | -132.75 ± 34.01a | -125.13 ± 22.85a | -111.30 ± 1.96ab | -96.05 ± 16.53a | -97.08 ± 12.39ab |
10-20 | -116.40 ± 5.83abc | -144.64 ± 7.83a | -137.39 ± 25.87a | -124.57 ± 15.03abc | -110.08 ± 36.13a | -98.74 ± 16.74ab |
20-40 | -89.31 ± 1.60c | -163.35 ± 30.89a | -148.37 ± 32.38a | -152.23 ± 16.11bc | -132.06 ± 9.74b | -119.34 ± 22.01abc |
40-60 | -92.37 ± 29.59c | -154.73 ± 39.10a | -143.87 ± 41.27a | -155.80 ± 13.31c | -142.22 ± 9.81bc | -128.18 ± 17.92bc |
60-80 | -101.28 ± 16.09bc | -138.64 ± 42.40a | -136.51 ± 37.99a | -166.77 ± 21.93c | -154.07 ± 0.23c | -138.05 ± 12.59c |
80-100 | -88.28 ± 13.99c | -133.77 ± 29.10a | -111.70 ± 14.02a | -140.27 ± 18.60b | -150.10 ± 10.17c | -145.18 ± 0.42c |
总计 Total | -111.42 ± 28.30 | -139.69 ± 28.91 | -129.43 ± 30.40 | -133.33 ± 30.28 | -123.87 ± 29.85 | -114.16 ± 23.93 |
土壤深度 Soil depth (cm) | 自然状态 Natural condition | |||||
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -161.74 ± 1.21a | -80.65 ± 11.33a | -46.96 ± 14.16a | -44.55 ± 7.54a | -39.07 ± 4.72a | -73.09 ± 3.86a |
5-10 | -145.11 ± 7.93a | -116.48 ± 0.62b | -82.27 ± 16.08ab | -55.23 ± 22.23a | -58.54 ± 18.07ab | -83.77 ± 0.03ab |
10-20 | -129.67 ± 41.18a | -143.01 ± 12.45c | -108.05 ± 23.09b | -75.70 ± 19.69ab | -80.23 ± 14.00bc | -80.38 ± 18.94a |
20-40 | -143.43 ± 33.96a | -135.82 ± 8.17c | -100.7 ± 20.72b | -119.97 ± 19.88c | -109.48 ± 9.59c | -113.12 ± 21.33b |
40-60 | -137.41 ± 38.22a | -111.21 ± 3.98b | -103.35 ± 32.47b | -124.08 ± 16.14c | -115.16 ± 30.70c | -103.35 ± 16.54ab |
60-80 | -106.92 ± 32.80a | -103.74 ± 8.42b | -93.11 ± 8.75ab | -115.80 ± 10.20bc | -100.41 ± 13.57c | -91.16 ± 4.62ab |
80-100 | -111.89 ± 21.70a | -109.07 ± 5.05b | -87.31 ± 17.86ab | -129.67 ± 20.34c | -92.01 ± 8.95bc | -100.55 ± 0.26ab |
总计 Total | -135.54 ± 28.58 | -114.28 ± 20.77 | -88.82 ± 24.72 | -95.00 ± 36.50 | -84.59 ± 30.37 | -92.24 ± 17.18 |
表2 不同深度土壤水分的氢稳定同位素比率(δD, ‰)的季节变化(平均值±标准偏差)
Table 2 Seasonal variation of hydrogen stable isotope ratio (δD, ‰) in soil water (mean ± SD)
土壤深度 Soil depth (cm) | 遮雨处理 Rain-exclusion treatment | |||||
---|---|---|---|---|---|---|
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -151.46 ± 17.39a | -109.92 ± 30.98a | -93.19 ± 35.33a | -82.37 ± 6.97a | -82.53 ± 18.76a | -85.90 ± 4.45a |
5-10 | -140.87 ± 27.79a | -132.75 ± 34.01a | -125.13 ± 22.85a | -111.30 ± 1.96ab | -96.05 ± 16.53a | -97.08 ± 12.39ab |
10-20 | -116.40 ± 5.83abc | -144.64 ± 7.83a | -137.39 ± 25.87a | -124.57 ± 15.03abc | -110.08 ± 36.13a | -98.74 ± 16.74ab |
20-40 | -89.31 ± 1.60c | -163.35 ± 30.89a | -148.37 ± 32.38a | -152.23 ± 16.11bc | -132.06 ± 9.74b | -119.34 ± 22.01abc |
40-60 | -92.37 ± 29.59c | -154.73 ± 39.10a | -143.87 ± 41.27a | -155.80 ± 13.31c | -142.22 ± 9.81bc | -128.18 ± 17.92bc |
60-80 | -101.28 ± 16.09bc | -138.64 ± 42.40a | -136.51 ± 37.99a | -166.77 ± 21.93c | -154.07 ± 0.23c | -138.05 ± 12.59c |
80-100 | -88.28 ± 13.99c | -133.77 ± 29.10a | -111.70 ± 14.02a | -140.27 ± 18.60b | -150.10 ± 10.17c | -145.18 ± 0.42c |
总计 Total | -111.42 ± 28.30 | -139.69 ± 28.91 | -129.43 ± 30.40 | -133.33 ± 30.28 | -123.87 ± 29.85 | -114.16 ± 23.93 |
土壤深度 Soil depth (cm) | 自然状态 Natural condition | |||||
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -161.74 ± 1.21a | -80.65 ± 11.33a | -46.96 ± 14.16a | -44.55 ± 7.54a | -39.07 ± 4.72a | -73.09 ± 3.86a |
5-10 | -145.11 ± 7.93a | -116.48 ± 0.62b | -82.27 ± 16.08ab | -55.23 ± 22.23a | -58.54 ± 18.07ab | -83.77 ± 0.03ab |
10-20 | -129.67 ± 41.18a | -143.01 ± 12.45c | -108.05 ± 23.09b | -75.70 ± 19.69ab | -80.23 ± 14.00bc | -80.38 ± 18.94a |
20-40 | -143.43 ± 33.96a | -135.82 ± 8.17c | -100.7 ± 20.72b | -119.97 ± 19.88c | -109.48 ± 9.59c | -113.12 ± 21.33b |
40-60 | -137.41 ± 38.22a | -111.21 ± 3.98b | -103.35 ± 32.47b | -124.08 ± 16.14c | -115.16 ± 30.70c | -103.35 ± 16.54ab |
60-80 | -106.92 ± 32.80a | -103.74 ± 8.42b | -93.11 ± 8.75ab | -115.80 ± 10.20bc | -100.41 ± 13.57c | -91.16 ± 4.62ab |
80-100 | -111.89 ± 21.70a | -109.07 ± 5.05b | -87.31 ± 17.86ab | -129.67 ± 20.34c | -92.01 ± 8.95bc | -100.55 ± 0.26ab |
总计 Total | -135.54 ± 28.58 | -114.28 ± 20.77 | -88.82 ± 24.72 | -95.00 ± 36.50 | -84.59 ± 30.37 | -92.24 ± 17.18 |
土壤深度 Soil depth (cm) | 日期 Date (month-day) | 平均值 Mean | ||||
---|---|---|---|---|---|---|
6-11 | 6-15 | 7-8 | 7-14 | 8-9 | ||
0-5 | 76.22% | 74.36% | 77.87% | 99.53% | 72.65% | 80.13% |
5-10 | 44.25% | 52.31% | 71.02% | 84.27% | 64.31% | 63.23% |
10-20 | 20.57% | 36.21% | 57.90% | 75.03% | 66.96% | 51.33% |
20-40 | 26.99% | 40.80% | 29.53% | 44.34% | 41.37% | 36.61% |
40-60 | 48.95% | 39.15% | 26.90% | 39.89% | 39.87% | 38.95% |
60-80 | 55.62% | 45.54% | 32.21% | 51.45% | 58.53% | 48.67% |
80-100 | 50.86% | 49.16% | 23.32% | 58.03% | 51.19% | 46.51% |
表3 自然状态下降雨对不同深度土壤水分δD值的贡献率
Table 3 Contribution of rainfall to soil water at different depths under natural conditions
土壤深度 Soil depth (cm) | 日期 Date (month-day) | 平均值 Mean | ||||
---|---|---|---|---|---|---|
6-11 | 6-15 | 7-8 | 7-14 | 8-9 | ||
0-5 | 76.22% | 74.36% | 77.87% | 99.53% | 72.65% | 80.13% |
5-10 | 44.25% | 52.31% | 71.02% | 84.27% | 64.31% | 63.23% |
10-20 | 20.57% | 36.21% | 57.90% | 75.03% | 66.96% | 51.33% |
20-40 | 26.99% | 40.80% | 29.53% | 44.34% | 41.37% | 36.61% |
40-60 | 48.95% | 39.15% | 26.90% | 39.89% | 39.87% | 38.95% |
60-80 | 55.62% | 45.54% | 32.21% | 51.45% | 58.53% | 48.67% |
80-100 | 50.86% | 49.16% | 23.32% | 58.03% | 51.19% | 46.51% |
1 | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431, 181-184. |
2 | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau.Ecology, 89, 2140-2153. |
3 | Bazzaz FA (1996). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, Cambridge, UK. |
4 | Burgess SSO, Adams MA, Turner NC, Ward B (2000). Characterisation of hydrogen isotope profiles in an agroforestry system: Implications for tracing water sources of trees.Agricultural Water Management, 45, 229-241. |
5 | Cao CY, Jiang DM, Luo YM, Kou ZW (2004). Stability of Caragana microphylla plantation for wind protection and sand fixation. Acta Ecologica Sinica, 24, 1178-1186.(in Chinese with English abstract)[曹成有, 蒋德明, 骆永明, 寇振武 (2004). 小叶锦鸡儿防风固沙林稳定性研究. 生态学报, 24, 1178-1186.] |
6 | Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China.Plant Ecology, 184, 1-12. |
7 | Chimner RA, Cooper DJ (2004). Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA.Plant and Soil, 260, 225-236. |
8 | Chu JM (2007). Study on Water Utility of Plant in Arid Area. PhD dissertation, Chinese Academy of Forestry, Beijing.(in Chinese with English abstract).[褚建民 (2007). 干旱区植物的水分选择性利用研究. 博士学位论文, 中国林业科学研究院, 北京] |
9 | Dawson TE, Ehleringer JR (1991). Streamside trees that do not use stream water.Nature, 350, 335-337. |
10 | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology.Annual Review of Ecology and Systematics, 33, 507-559. |
11 | Dettinger MD, Cayan DR, Diaz HF, Meko DM (1998). North-South precipitation patterns in western north america on Interannual-to-Decadal timescales.Journal of Climate, 11, 3095-3111. |
12 | Dodd MB, Lauenroth WK, Welker JM (1998). Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community.Oecologia, 117, 504-512. |
13 | Donovan LA, Ehleringer JR (1994). Water stress and use of summer precipitation in a Great Basin shrub community.Functional Ecology, 8, 289-297. |
14 | Du XL, Wang SJ (2011). Recent advances of stable hydrogen and oxygen isotopic techniques in plant water use strategy.Chinese Agricultural Science Bulletin, 27(22), 5-10.(in Chinese with English abstract)[杜雪莲, 王世杰 (2011). 稳定性氢氧同位素在植物用水策略中的研究进展. 中国农学通报, 27(22), 5-10.] |
15 | Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074. |
16 | Ehleringer JR, Dawson TE (1992). Water uptake by plants: Perspectives from stable isotope composition.Plant, Cell & Environment, 15, 1073-1082. |
17 | Ehleringer JR, Phillips SL, Schuster WS, Sandquist DR (1991). Differential utilization of summer rains by desert plants.Oecologia, 88, 430-434. |
18 | Ehleringer JR, Roden J, Dawson TE (2000). Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer, New York. 181-198. |
19 | Flanagan LB, Ehleringer JR, Marshall JD (1992). Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland.Plant, Cell & Environment, 15, 831-836. |
20 | Gonfiantini R (1978). Standards for stable isotope measurements in natural compounds.Nature, 271, 534-536. |
21 | Griggs DJ, Noguer M (2002). Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change.Weather, 57, 267-269. |
22 | Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland E, Zhai PM (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change.Climatic Change, 42, 243-283. |
23 | Jia HK, Liu YH, Xu X, Wang K, Gao Q (2006). Simulation of soil water dynamics in a Caragana intermedia woodland in Huangfuchuan watershed: Relationship among slope, aspect, plant density and soil water content. Journal of Plant Ecology (Chinese Version), 29, 910-917.(in Chinese with English abstract)[贾海坤, 刘颖慧, 徐霞, 王昆, 高琼 (2006). 皇甫川流域柠条林地水分动态模拟——坡度、坡向、植被密度与土壤水分的关系. 植物生态学报, 29, 910-917.] |
24 | Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4, 19-28. |
25 | Leffler AJ, Caldwell MM (2005). Shifts in depth of water extraction and photosynthetic capacity inferred from stable isotope proxies across an ecotone of Juniperus osteosperma (Utah juniper) and Artemisia tridentata (big sagebrush).Journal of Ecology, 93, 783-793. |
26 | Li SG, Tsujimura M, Sugimoto A, Sasaki L, Yamanaka T, Davaa G, Oyunbaatar D, Sugita M (2006). Seasonal variation in oxygen isotope composition of waters for a montane larch forest in Mongolia.Trees-Structure and Function, 20, 122-130. |
27 | Li XY (2012). Coupling, respond and adaptation of soil-plant- water in arid areas in arid area.Science China: Earth Science, 41, 1721-1730.(in Chinese)[李小雁 (2012). 干旱地区土壤-植被-水文耦合, 响应与适应机制. 中国科学: 地球科学, 41, 1721-1730.] |
28 | Li XY, Zhang SY, Peng HY, Hu X, Ma YJ (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30. |
29 | Lin GH, Sternberg L (1994). Utilization of surface-water by red mangrove (Rhizophora mangle L.): An isotopic study.Bulletin of Marine Science, 54, 94-102. |
30 | Lin GH, Sternberg L, da SL (1993). Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Ehleringer JR, Hall AE, Farquhar GD eds. Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, USA. 497-510. |
31 | Liu WR, Peng XH, Shen YJ, Chen XM (2013). Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections. Chinese Journal of Ecology, 32, 1181-1186.(in Chinese with English abstract)[刘文茹, 彭新华, 沈业杰, 陈效民 (2013). 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正. 生态学杂志, 32, 1181-1186.] |
32 | Ma CC, Gao YB, Jiang FQ, Wang JL, Guo HY, Wu JB, Su D (2004). The comparison studies of ecological and water regulation characteristics of Caragana microphylla and Caragana stenophylla.Acta Ecologica Sinica, 24, 1442-1451.(in Chinese with English abstract)[马成仓, 高玉葆, 蒋福全, 王金龙, 郭宏宇, 吴建波, 苏丹 (2004). 小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究. 生态学报, 24, 1442-1451.] |
33 | Meng XJ, Wen XF, Zhang XY, Han JY, Sun XM, Li XB (2012). Potential impacts of organic contaminant on δ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy.Chinese Journal of Eco-Agricul- ture, 20, 1359-1365.(in Chinese with English abstract)[孟宪菁, 温学发, 张心昱, 韩佳音, 孙晓敏, 李晓波 (2012). 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响. 中国生态农业学报, 20, 1359-1365.] |
34 | Nippert JB, Knapp AK (2007). Soil water partitioning contributes to species coexistence in tallgrass prairie.Oikos, 116, 1017-1029. |
35 | Peng HY (2011). Spatial Pattern of Shrub Patches and Its Ecohydrological Mechanism at the Typical Steppe in Inner Mongolia. PhD dissertation, Beijing Normal University, Beijing.(in Chinese with English abstract)[彭海英 (2011). 内蒙古典型草原小叶锦鸡儿灌丛空间分布格局及其生态水文机理. 博士学位论文, 北京师范大学, 北京.] |
36 | Peng HY, Li XY, Li GY, Zhang ZH, Zhang SY, Li L, Zhao GQ, Jiang ZY, Ma YJ (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China.Catena, 109, 39-48. |
37 | Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: Coping with too many sources.Oecologia, 136, 261-269. |
38 | Rose KL, Graham RC, Parker DR (2003). Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock.Oecologia, 134, 46-54. |
39 | Rozanski K, Araguás-Araguás L, Gonfiantini R (1993). Isotopic patterns in modern global precipitation.Geophysical Monograph Series, 78, 1-36. |
40 | Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake.Journal of Arid Environments, 60, 547-566. |
41 | Vitousek PM (1994). Beyond global warming: Ecology and global change.Ecology, 75, 1861-1876. |
42 | Wang P, Song XF, Han DM, Zhang YH, Liu X (2010). A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China.Agricultural Water Management, 97, 475-482. |
43 | White JW, Cook ER, Lawrence JR, Wallace SB (1985). The DH ratios of sap in trees: Implications for water sources and tree ring DH ratios.Geochimica et Cosmochimica Acta, 49, 237-246. |
44 | Wu Y, Zhou H, Zheng XJ, Li Y, Tang LS (2013). Seasonal changes in the water use strategies of three co-occurring desert shrubs.Hydrological Processes, 28, 6265-6275. |
45 | Xiong XG, Han XG (2005). Spatial heterogeneity in soil carbon and nitrogen resources, caused by Caragana microphylla, in the thicketization of semiarid grassland, Inner Mongolia.Acta Ecologica Sinica, 25, 1678-1683.(in Chinese with English abstract)[熊小刚, 韩兴国 (2005). 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、 氮资源空间异质性分布. 生态学报, 25, 1678-1683.] |
46 | Xiong XG, Han XG, Bai YF, Pan QM (2003). Increased distribution of Caragana microphylla in rangelands and its causes and consequences in Xilin River Basin.Acta Prataculturae Sinica, 12(3), 57-62.(in Chinese with English abstract)[熊小刚, 韩兴国, 白永飞, 潘庆民 (2003). 锡林河流域草原小叶锦鸡儿分布增加的趋势, 原因和结局. 草业学报, 12(3), 57-62.] |
47 | Xu Q, Li HB, Chen JQ, Cheng XL, Liu SR, An SQ (2011). Water use patterns of three species in subalpine forest, Southwest China: The deuterium isotope approach.Ecohydrology, 4, 236-244. |
48 | Yang H, Auerswald K, Bai YF, Han XG (2011). Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China.Plant and Soil, 340, 303-313. |
49 | Yang Q, Xiao HL, Zhao LJ, Zhou MX, Li CZ, Cao SK (2010). Stable isotope techniques in plant water sources: A review.Sciences in Cold and Arid Regions, 2, 112-122. |
50 | Zhang Z, Wang SP, Nyren P, Jiang GM (2006). Morphological and reproductive response of Caragana microphylla to different stocking rates.Journal of Arid Environments, 67, 671-677. |
51 | Zhou DW (1990). Caragana microphylla thicketization of grassland, Inner Mongolia.Inner Mongolia Prataculture, (3), 17-19.(in Chinese)[周道玮 (1990). 内蒙古小叶锦鸡儿灌丛化草地. 内蒙古草业, (3), 17-19.] |
[1] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests[J]. Plant Diversity, 2023, 45(05): 552-568. |
[2] | Sampa Kundu, Taposhi Hazra, Tapan Chakraborty, Subir Bera, Mahasin Ali Khan. Evidence of the oldest extant vascular plant (horsetails) from the Indian Cenozoic[J]. Plant Diversity, 2023, 45(05): 569-589. |
[3] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America[J]. Plant Diversity, 2023, 45(04): 369-384. |
[4] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots[J]. Plant Diversity, 2023, 45(03): 265-271. |
[5] | Thant Sin Aung, Alice C. Hughes, Phyo Kay Khine, Bo Liu, Xiao-Li Shen, Ke-Ping Ma. Patterns of floristic inventory and plant collections in Myanmar[J]. Plant Diversity, 2023, 45(03): 302-308. |
[6] | Jian Zhang, Hong Qian. U.Taxonstand: An R package for standardizing scientific names of plants and animals[J]. Plant Diversity, 2023, 45(01): 1-5. |
[7] | Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China[J]. Plant Diversity, 2022, 44(05): 436-444. |
[8] | Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species[J]. Plant Diversity, 2022, 44(02): 181-190. |
[9] | Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains[J]. Plant Diversity, 2022, 44(01): 30-38. |
[10] | Atefeh Ghorbanalizadeh, Hossein Akhani. Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species[J]. Plant Diversity, 2022, 44(01): 39-69. |
[11] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation[J]. Plant Diversity, 2021, 43(03): 181-191. |
[12] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae)[J]. Plant Diversity, 2021, 43(01): 1-14. |
[13] | Jie Qian, Huifu Zhuang, Weikang Yang, Yifeng Chen, Shilong Chen, Yanhua Qu, Yuanming Zhang, Yongping Yang, Yuhua Wang. Selecting flagship species to solve a biodiversity conservation conundrum[J]. Plant Diversity, 2020, 42(06): 488-491. |
[14] | Peter Raven, Mathis Wackernagel. Maintaining biodiversity will define our long-term success[J]. Plant Diversity, 2020, 42(04): 211-220. |
[15] | Li-Shen Qian, Jia-Hui Chen, Tao Deng, Hang Sun. Plant diversity in Yunnan: Current status and future directions[J]. Plant Diversity, 2020, 42(04): 281-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||