[1] Alahuhta, J., 2015. Geographic patterns of lake macrophyte communities and species richness at regional scale. J. Veg. Sci. 26, 564-575. [2] Alahuhta, J., Antikainen, H., Hjort, J., et al., 2020. Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. J. Ecol. 108, 1262-1275. [3] Alahuhta, J., Kosten, S., Akasaka, M., et al., 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758-1769. [4] Alahuhta, J., Lindholm, M., Baastrup-Spohr, L., et al., 2021. Macroecology of macrophytes in the freshwater realm: Patterns, mechanisms and implications. Aquat. Bot. 168, 103325. [5] Alahuhta, J., Lindholm, M., Bove, C.P., et al., 2018. Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia 188, 1167-1182. [6] Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134-143. [7] Baselga, A., Orme, C.D.L., 2012. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808-812. [8] Bryant, J., Lamanna, C., Morlon, H., et al., 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11505-11511. [9] Chappuis, E., Ballesteros, E., Gacia, E., 2012. Distribution and richness of aquatic plants across Europe and Mediterranean countries: patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci. 23, 985-997. [10] Chen, S., Ouyang, Z., Xu, W., et al., 2010. A review of beta diversity studies. Biodiv. Sci. 18, 323-335. [11] Chen, Y., Ma, X., Du, Y., et al., 2012. The Chinese aquatic plants. Zhengzhou: Henan Science and Technology Press. [12] Cook, C.D.K., 1985. Range extensions of aquatic vascular plant species. J. Aquat. Plant Manage. 23, 1-6. [13] Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S. et al., 2012. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 21: 191-197. [14] Dyer, L.A., Singer, M.S., Lill, J.T., et al., 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448, 696-700. [15] Eadie, J.M., Keast, A., 1983. Resource heterogeneity and fish species diversity in lakes. Can. J. Zool. 62, 1689-1695. [16] ESRI, 2016. ArcGIS release 10.5 [online]. Available from https://www.esri.com [accessed 20 January 2019]. [17] Feld, C.K., da Silva, P.M., Sousa, J.P., et al., 2009. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos 118, 1862-1871. [18] Fu, H., Yuan, G., Jeppesen, E., et al., 2019. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206-217. [19] Garcia-Giron, J., Heino, J., Baastrup-Spohr, L., et al., 2020. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Sci. Total Environ. 723, 138021. [20] Gaston, K., 2000. Global patterns in biodiversity. Nature 405, 220-227. [21] Gaston, K.J., Davies, R.G., Orme, D.L., et al., 2007. Spatial turnover in the global avifauna. P. Roy. Soc. B-Biol. Sci. 274, 1567-1574. [22] GBIF.org (12 August 2021) GBIF Occurrence Download https://doi.org/10.15468/dl.7ct32y. [23] Goslee, S., Urban, D. 2022. ecodist: dissimilarity-based functions for ecological analysis. R package version 2.0.9. https://CRAN.R-project.org/package=ecodist [24] Graham, C.H., Fine, P.V.A., 2008. Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265-1277. [25] Griffiths, D., 2017. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 44, 1723-1733. [26] Grosberg, R. K., Vermeij, G. J., Wainwright, P. C., 2012. Biodiversity in water and on land. Curr. Biol. 22, R900-R903. [27] Guo, Q., Qian, H., Zhang, J., 2022. On the relationship between species diversity and range size. J. Biogeogr. 49, 1911-1919. [28] Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192-211. [29] Hilt, S., Vermaat, J.E., va de Weyer, K., 2022. Macrophytes. In: Mehner, T., Tockner, K. (eds.) Encyclopedia of Inland Waters, 2nd Edition. Elsevier. Volume 2 14-25 pp. [30] Huang, X., Li, F., Wang, Z., et al., 2023. Are allometric model parameters of aboveground biomass for trees phylogenetically constrained? Plant Divers. https://doi.org/10.1016/j.pld.2022.11.005. [31] Ives, A.R., Helmus, M.R., 2010. Phylogenetic metrics of community similarity. Am. Nat. 176, E128-E142. [32] Jin, Y., Qian, H. 2019. VPhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. [33] Jin, Y., Qian, H. 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. https://doi.org/10.1016/j.pld.2022.05.005. [34] Larsen, S., Comte, L., Filipe, A.F., et al., 2021. The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791-801. [35] Legendre, P., Lapointe, F.-J., Casgrain, P., 1994. Modeling brain evolution from behavior: A permutational regression approach. Evolution 48, 1487-1499. [36] Legendre, P. and Legendre, L., 2012. Numerical Ecology, 3rd ed. Elsevier. [37] Leprieur, F., Albouy, C., de Bortoli, J., et al., 2012. Quantifying phylogenetic beta diversity: Distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS One 7, e42760. [38] Lewinsohn, T.M., Roslin, T., 2008. Four ways towards tropical herbivore megadiversity. Ecol. Lett. 11, 398-416. [39] Liu, K., Song, C., Ke, L., et al., 2020. Automatic watershed delineation in the Tibetan endorheic basin: A lakeoriented approach based on digital elevation models. Geomorphology 358, 107127. [40] Lu, L., Mao, L., Yang, T., Ye, J., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. [41] McKnight, M.W., White, P.S., McDonald, R.I., et al., 2007. Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biol. 5, 2424-2432. [42] Melo, A.S., Rangel, T.F.L.V.B., Diniz-Filho, J.A.F., 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32, 226-236. [43] Murphy, K., Carvalho, P., Efremov, A., et al., 2020. Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biol. 65, 1622-1640. [44] Murphy, K., Efremov, A., Davidson, T.A., et al., 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquat. Bot. 158, 103127. [45] Nekola, J.C., White, P.S., 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867-878. [46] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2020. Vegan: community ecology package. R package version 2.6-2. https://cran.r-project.org/web/packages/vegan/index.html [47] Peixoto, F.P., Villalobos, F., Melo, A.S., et al., 2017. Geographical patterns of phylogenetic beta-diversity components in terrestrial mammals. Global Ecol. Biogeogr. 26, 573-583. [48] Pianka, E.R., 1966. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 100, 33-46. [49] Pinto-Ledezma, J.N., Larkin, D.J., Cavender-Bares, J. 2018. Patterns of beta diversity of vascular plants and their correspondence with biome boundaries across North America. Front. Ecol. Evol. 6, 194. [50] Qian, H., 2009. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks. J. Syst. Evol. 47, 509-514. [51] Qian, H., Badgley, C., Fox, D.L., 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecol. Biogeogr. 18, 111-122. [52] Qian, H., Cao, Y., Chu, C., et al., 2021b. Taxonomic and phylogenetic β-diversity of freshwater fish assemblages in relationship to geographical and climatic determinants in North America. Global Ecol. Biogeogr. 30, 1965-1977. [53] Qian, H., Chen, S., 2016. Reinvestigation on species richness and environmental correlates of bryophytes at a regional scale in China. J. Plant Ecol. 9, 734-741. [54] Qian, H., Deng, T., Beck, J., et al., 2018. Incomplete species lists derived from global and regional specimen-record databases affect macroecological analyses: A case study on the vascular plants of China. J. Biogeogr. 45, 2718-2729. [55] Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [56] Qian, H., Jin, Y., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233-239. [57] Qian, H., Jin, Y., Leprieur, F., et al., 2020. Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography 43, 1706-1716. [58] Qian, H., Jin, Y., Leprieur, F., et al., 2021a. Patterns of phylogenetic beta diversity measured at deep evolutionary histories across geographical and ecological spaces for angiosperms in China. J. Biogeogr. 48, 773-784. [59] Qian, H., Ricklefs, R.E., 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 10, 737-744. [60] Qian, H., Swenson, N.G., Zhang, J.L., 2013. Phylogenetic beta diversity of angiosperms in North America. Global Ecol. Biogeogr. 22, 1152-1161. [61] R Core Team, 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [62] Ricklefs, R.E., 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1-15. [63] Santamaria, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23, 137-154. [64] Si, X., Zhao, Y., Chen, C. et al., 2017. Beta-diversity partitioning: methods, applications and perspectives. Biodiv. Sci. 25, 464-480. [65] Smouse, P.E., Long, J.C., Sokal, R.R., 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35, 627-632. [66] Stevens, G.C., 1989. The latitudinal gradients in geographical range: How so many species coexist in the tropics. Am. Nat. 133, 240-256. [67] Stevens, R.D., Willig, M.R., 2002. Geographical ecology at the community level: Perspectives on the diversity of New World bats. Ecology 83, 545-560. [68] Terlizzi, A., Anderson, M.J., Bevilacqua, S., et al., 2009. Beta diversity and taxonomic sufficiency: Do higher-level taxa reflect heterogeneity in species composition? Divers. Distrib. 15, 450-458. [69] Tomasovych, A., Kennedy, J.D., Betzner, T.J. et al., 2016. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proc. Soc. B 283, 20153027. [70] Viana D.S., Figuerola, K.S., Manca, M., et al., 2016. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39, 281-288. [71] Vymazal, J., Kropfelova, L. 2008. Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer: Dordrecht, The Netherlands. [72] Wang, Q., Li, W., Wang, G., et al. 2021. Aquatic Plants of China. Wuhan: Hubei Science and Technology Press. [73] Wang, S., Dou, H., 1998. China Lakes Record. Science Press. [74] Wang, Z., Fang J., Tang, Z., et al., 2012. Geographical patterns in the beta diversity of China's woody plants: The influence of space, environment, and range size. Ecography 35, 1092-1102. [75] Weinstein, B.G., Tinoco, B., Parra, J.L., et al., 2014. Taxonomic, phylogenetic, and trait beta diversity in South American hummingbirds. Am Nat. 184, 211-224. [76] Whittaker, R.H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279-338. [77] Ye, J., Lu, L., Liu, B., et al., 2019. Phylogenetic delineation of regional biota: A case study of the Chinese flora. Mol. Phylogenet. Evol. 135, 222-229. [78] Yue, J., Li, R., 2021. Phylogenetic relatedness of woody angiosperm assemblages and its environmental determinants along a subtropical elevational gradient in China. Plant Divers. 43, 111-116. [79] Zhang, J., Qian, H., 2022. U.Taxonstand: An R package for standardizing scientific names of plants and animals. Plant Divers. https://doi.org/10.1016/j.pld.2022.09.001. [80] Zhang, Y.-Z., Qian, L.-S., Spalink, D., et al., 2021. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 43, 181-191. [81] Zhao, S., Fang, J., Peng, C., et al., 2006. Relationships between species richness of vascular plants and terrestrial vertebrates in China: Analyses based on data of nature reserves. Divers. Distrib. 12, 189-194. [82] Zhou, Y., Qian, H., Xiao, K., et al., 2023. Geographic patterns and environmental correlates of taxonomic and phylogenetic diversity of aquatic plants in China. J. Syst. Evol. 0, 1-11. https://doi.org/10.1111/jse.12939 [83] Zhou, Y., Xiao, K., Chen, S., et al., 2022. Altitudinal diversity of aquatic plants in the Qinghai-Tibet Plateau. Freshwater Biol. 67, 709-719. |