[1] Amiryousefi, A., Hyvonen, J., Poczai, P., 2018. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031. [2] Bai, H.R., Oyebanji, O., Zhang, R., et al., 2021. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae). Plant Divers. 43, 27-34. [3] Bengtsson-Palme, J., Ryberg, M., Hartmann, M., et al., 2013. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914-919. [4] Bolger, A.M., Marc, L., Bjoern, U., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [5] Chen, Q., Wu, X.B., Zhang, D.Q., 2020. Comparison of the abilities of universal, super, and specific DNA barcodes to discriminate among the original species of Fritillariae cirrhosae bulbus and its adulterants. PLoS One 15, e0229181. [6] Chen, Q., Hu, H.S., Zhang, D.Q., 2022. DNA barcoding and phylogenomic analysis of the genus Fritillaria in China based on complete chloroplast genomes. Front. Plant Sci. 13, 764255. [7] Chen, S.F., Zhou, Y.Q., Chen, Y.R., et al., 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890. [8] Cowley, E.J., 2007. The genus Roscoea. Kew, UK: The Royal Botanic Gardens. [9] Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2: more models, new heuristics and high-performance computing. Nat. Methods 9, 772. [10] Du, G.H., Zhang, Z.Q., Li, Q.J., 2012. Morphological and molecular evidence for natural hybridization in sympatric population of Roscoea humeana and R. cautleoides (Zingiberaceae). J. Plant Res. 125, 595-603. [11] Doyle, J.J., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [12] Escobari, B., Borsch, T., Quedensley, T.S., et al., 2021. Plastid phylogenomics of the Gynoxoid group (Senecioneae, Asteraceae) highlights the importance of motif-based sequence alignment amid low genetic distances. Am. J. Bot. 108, 2235-2256. [13] Fu, C.N., Wu, C.S., Ye, L.J., et al., 2019. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. [14] Fu, C.N., Mo, Z.Q., Yang, J.B., et al., 2022. Testing genome skimming for species discrimination in large taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404-414. [15] Ji, Y.H., Liu, C.K., Yang, Z.Y., et al., 2019. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333-1345. [16] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [17] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance. Mol. Biol. Evol. 30, 772-780. [18] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [19] Kleinwee, I., Larridon, I., Shah, T., et al., 2022. Plastid phylogenomics of the Sansevieria clade of Dracaena (Asparagaceae) resolves a recent radiation. Mol. Phylogenet. Evol. 169, 107404. [20] Kreuzer, M., Howard, C., Adhikari, B., et al., 2019. Phylogenomic approaches to DNA barcoding of herbal medicines: developing clade-specific diagnostic characters for Berberis. Front. Plant Sci. 10, 586. [21] Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. [22] Li, D.B., Ou, X.K., Zhao, J.L., et al., 2020a. An ecological barrier between the Himalayas and the Hengduan Mountains maintains the disjunct distribution of Roscoea. J. Biogeogr. 47, 326-341. [23] Li, S., Liu, S.L., Pei, S.Y., et al., 2020b. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers. Plant Divers. 42, 343-350. [24] Li, X.W., Yang, Y., Henry, R.J., et al., 2015. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157-166. [25] Li, Z.Z., Gichira, A.W., Muchuku, J.K., et al., 2021. Plastid phylogenomics and biogeography of the genus Monochoria (Pontederiaceae). J. Syst. Evol., 59, 1027-1039. [26] Liang, H., Zhang, Y., Deng, J.B., et al., 2020. The complete chloroplast genome sequences of 14 Curcuma species: insights into genome evolution and phylogenetic relationships within Zingiberales. Front. Genet. 11, 802. [27] Liang, H., Chen, J., 2021. Comparison and phylogenetic analyses of nine complete chloroplast genomes of Zingibereae. Forests 12, 710. [28] Luo, M.H., Wan, H.L., Lin, H.H., 2008. Species and distribution of Roscoea in China and the medicinal use. Chin. Wild Plant Resour. 27, 35-37+41. [29] Misra, A., Srivastava, S., Verma, S., et al., 2015. Nutritional evaluation, antioxidant studies and quantification of poly phenolics in Roscoeae purpurea tubers. BMC Res. Notes 8, 324. [30] Mohammad-Panah, N., Shabanian, N., Khadivi, A., et al., 2017. Genetic structure of gall oak (Quercus infectoria) characterized by nuclear and chloroplast SSR markers. Tree Genet. Genomes 13, 70. [31] Murat, C., Riccioni, C., Belfiori, B., et al., 2011. Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers. Fungal Genet. Biol. 48, 592-601. [32] Ngamriabsakul, C., Newman, M.F., Cronk, Q.C.B., et al., 2000. Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinburgh J. Bot. 57, 39-61. [33] Nock, C.J., Waters, D., Edwards, M.A., et al., 2015. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol. J. 9, 328-333. [34] Powell, W., Morgante, M., McDevitt, R., et al., 1995. Polymorphic simple sequence repeat regions in chloroplast genomes, application to the population genetics of pines. Proc. Natl. Acad. Sci. U.S.A. 92, 7759-7763. [35] Rawat, S., Jugran, A.K., Bhatt, I.D., et al., 2018. Influence of the growth phenophases on the phenolic composition and anti-oxidant properties of Roscoea procera Wall. in western Himalaya. J. Food Sci. Technol. 55, 578-585. [36] Ronquist, F., Teslenko, M., Van, D.M.P., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. [37] Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34, 3299-3302. [38] Sahu, M.S., Mali, P.Y., Waikar, S.B., et al., 2010. Evaluation of immunomodulatory potential of ethanolic extract of Roscoea procera rhizomes in mice. J. Pharm. Bioallied Sci. 4, 346-349. [39] Shahzadi, I., Abdullah., Mehmood, F., et al., 2019. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae. Genomics 112, 1454-1463. [40] Shaw, J., Lichey, E.B., Schilling, E.E., et al., 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 94, 275-288. [41] Small, R.L., Ryburn, J.A., Cronn, R.C., et al., 1998. The tortoise and the hare: Choosing between noncoding plastome and nuclear ADH sequences for phylogeny reconstruction in a recently diverged plant group. Am. J. Bot. 85, 1301-1315. [42] Srivastava, S., Ankita, M., Kumar, D., et al., 2015. Reversed-phase high-performance liquid chromatography-ultraviolet photodiode array detector validated simultaneous quantification of six bioactive phenolic acids in Roscoea purpurea tubers and their in vitro cytotoxic potential against various cell lines. Pharmacogn. Mag. 11, 488-495. [43] Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. [44] Tang, H.Q., Tang, L., Shao, S.C., et al., 2021. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Orchidaceae, Epidendroideae, Malaxideae): insights into species divergence and adaptive evolution. Plant Divers. 43, 350-361. [45] Thiel, T., Michalek, W., Varsheny, R., et al., 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411-422. [46] Wei, R., Yang, J., He, L.J., et al., 2021. Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae. Cladistics 37, 717-727. [47] Wiche, S., Schneeweiss, G.M., dePamphilis, C.W., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 76, 273-297. [48] Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [49] Wu, D.L., Larsen, K., 2000. Roscoea Sm. In: Wu, Z.Y., Raven, P.H. (Eds.), Flora of China, Vol. 24. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 362-366. [50] Wu, Q., Jiang, M., Chen, H.M., et al., 2020. Comparative analysis of three complete chloroplast genomes of Inula genus with phylogenetic analysis of 49 plants from Carduoideae. Acta Pharm. Sin. 55, 1042-1049. [51] Xu, Y.L., Shen, H.H, Du, X.Y., et al., 2022. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae). Plant Divers. 44, 519-529. [52] Yang, B.B., Li, L.D., Liu, J.Q., et al., 2021. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau. Plant Divers. 43, 198-205. [53] Yang, J.B., Li, D.Z., Li, H.T., 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024-1031. [54] Yang, J.P., Zhu, Z.L., Fan, Y.J., et al., 2020. Comparative plastomic analysis of three Bulbophyllum medicinal plants and its utility for species identification. Acta Pharm. Sin. 55, 2736-2745. [55] Zhang, D.Q., Duan, L.Z., Zhou, N., 2014. Application of DNA barcoding in Roscoea (Zingiberaceae) and a primary discussion on taxonomic status of Roscoea cautleoides var. pubescens. Biochem. Syst. Ecol. 52, 14-19. [56] Zhang, D.Q., Yang, Y.S., Zhou, N., 2015. The identify of Roscoea cauteoides var. pubescens (Z.Y. Zhu) T.L. Wu based on molecular and morphological evidences. Phytotaxa 205, 259-267. [57] Zhang, L., Huang, Y.W., Huang, J.L., et al., 2022a. DNA barcoding of Cymbidium by genome skimming: Call for next-generation nuclear barcodes. Mol. Ecol. Resour. 00, 1-16. [58] Zhang, Y.M., Han, L.J., Yang, C.W., 2022b. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships. Plant Divers. 44, 70-82. [59] Zhao, J.L., Xia, Y.M., Cannon, C.H., et al., 2016a. Evolutionary diversification of alpine ginger reflects the early uplift of the Himalayan-Tibetan Plateau and rapid extrusion of Indochina. Gondwana Res. 32, 232-241. [60] Zhao, J.L., Gugger, P.F., Xia, Y.M., et al., 2016b. Ecological divergence of two closely related Roscoea species associated with late Quaternary climate change. J. Biogeogr. 43, 1990-2001. [61] Zhao, J.L., Zhong, J.S., Fan, Y.L., et al., 2017. A preliminary species-level phylogeny of the alpine ginger Roscoea: implications to speciation. J. Syst. Evol. 55, 215-224. [62] Zhao, J.L., Paudel, B.R., Yu, X.Q., et al., 2021. Speciation along the elevation gradient: divergence of Roscoea species within the south slope of the Himalayas. Mol. Phylogenet. Evol. 164, 107292. [63] Zheng, D.S., Zhang, J.Y., Guo, Q.S., 2013. CpDNA non-coding sequence analysis of Pinellia ternata and its related species. Chin. Tradit. Herb. Drugs 44, 881-886. |