[1] Abbott, R., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246. [2] Abbott, R.J., 2017. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J. Syst. Evol. 55, 238-258. [3] Anderson, E., Thompson, E., 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217-1229. [4] Arnold, M.L., 2015. Divergence with genetic exchange (2nd edn). Oxford University Press. [5] Bain, A., Chou, L.S., Tzeng, H.Y., et al., 2014. Plasticity and diversity of the phenology of dioecious Ficus species in Taiwan. Acta Oecol. 57, 124-134. [6] Berg, CC., Chantarasuwan B., 2007. A study on the taxonomy of some stoloniflorous species of Ficus subsection Sycocarpus (Moraceae) in Thailand and Malesia. Blumea 52, 313-326. [7] Berg, C.C., Pattharahirantricin, N., Chantarasuwan, B., 2011. Flora of Thailand. Volume 10, Part 4:Cecropiaceae and Moraceae, pp. 240. [8] Bernard, J., Brock, K.C., Tonnell, V., et al., 2020. New species assemblages disrupt obligatory mutualisms between figs and their pollinators. Front. Ecol. Evol. 8, 564653. [9] Bridle, J.R., Vines, T.H., 2007. Limits to evolution at range margins:When and why does adaptation fail? Trends Ecol. Evol. 22, 140-147. [10] Britch, S.C., Cain, M.L., Howard, D.J., 2001. Spatio-temporal dynamics of the Allonemobius fasciatus-A. socius mosaic hybrid zone:A 14-year perspective. Mol. Ecol. 10, 627-638. [11] Bronstein, J.L., Gouyon, P.H., Gliddon, C., 1990. The ecological consequences of flowering asynchrony in monoecious figs:A simulation study. Ecology 71, 2145-2156. [12] Burgess, K.S., Morgan, M., Deverno, L., et al., 2005. Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol. Ecol. 14, 3471-3483. [13] Chen, H.H., Peng, Y.Q., Zhang, Y., et al., 2015. Winter cropping in Ficus tinctoria:An alternative strategy. Sci. Rep. 5, 16496. [14] Chen, H.H., Zhang, Y., Peng, Y.Q., et al., 2018. Latitudinal effects on phenology near the northern limit of figs in China. Sci. Rep. 8, 4320. [15] Chen, Y., Jiang, Z.X., Compton, S.G., et al., 2011. Genetic diversity and differentiation of the extremely dwarf Ficus tikoua in Southwestern China. Biochem. Syst. Ecol. 39, 441-448. [16] Chhatre, V.E., Evans, L.M., DiFazio, S.P., et al., 2018. Adaptive introgression and maintenance of a trispecies hybrid complex in range-edge populations of Populus. Mol. Ecol. 27, 4820-4838. [17] Chunco, A.J., 2014. Hybridization in a warmer world. Ecol. Evol. 4, 2019-2031. [18] Cook, J.M., Rasplus, J.Y., 2003. Mutualists with attitude:Coevolving fig wasps and figs. Trends Ecol. Evol. 18, 241-248. [19] Cook, J.M., Segar, S.T., 2010. Speciation in fig wasps. Ecol. Entomol. 35, 54-66. [20] Corlett, R.T., 1987. The phenology of Ficus fistulosa in Singapore. Biotropica 19, 122-124. [21] Cornille, A., Underhill, J.G., Cruaud, A., et al., 2011. Floral volatiles, pollinator sharing and diversification in the fig-wasp mutualism:Insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc. R. Soc. Lond. Ser. B-Biol. Sci. 279, 1731-1739. [22] Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Associates. [23] Cruaud, A., Roensted, N., Chantarasuwan, B., et al., 2012. An extreme case of plant-insect co-diversification:Figs and fig-pollinating wasps. Syst. Biol. 61, 1029-1047. [24] Cruzan, M.B., Arnold, M.L., 1993. Ecological and genetic associations in an Iris hybrid zone. Evolution 47, 1432-1445. [25] De Cahsan, B., Kiemel, K., Westbury, M.V., et al., 2021. Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad. Ecol. Evol. 11, 9776-9790. [26] de Casas, R.R., Cano, E., Balaguer, L., et al., 2007. Taxonomic identity of Quercus coccifera L. in the Iberian Peninsula is maintained in spite of widespread hybridisation, as revealed by morphological, ISSR and ITS sequence data. Flora 202, 488-499. [27] Dunn, D.W., Yu, D.W., Ridley, J., et al., 2008 Longevity, early emergence and body size in a pollinating fig wasp-implications for stability in a fig-pollinator mutualism. J. Anim. Ecol. 77, 927-935. [28] Earl, D.A., Vonholdt, B.M., 2012. STRUCTURE HARVESTER:A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359-361. [29] Ellstrand, N.C., Whitkus, R., Rieseberg, L.H., 1996. Distribution of spontaneous plant hybrids. Proc. Natl. Acad. Sci. USA 93, 5090-5093. [30] Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study. Mol. Ecol. 14, 2611-2620. [31] Excoffier, L., Lischer, H.E.L., 2010. Arlequin suite ver 3.5:A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564-567. [32] Fitzpatrick, S.W., Gerberich, J.C., Kronenberger, J.A., et al., 2015. Locally adapted traits maintained in the face of high gene flow. Ecol. Lett. 18, 37-47. [33] Frejaville, T., Vizcaino-Palomar, N., Fady, B., et al., 2020. Range margin populations show high climate adaptation lags in European trees. Glob. Change Biol. 26, 484-495. [34] Fungjanthuek, J., Huang, M.J., Hughes, A.C., et al., 2022. Ecological niche overlap and prediction of the potential distribution of two sympatric Ficus (Moraceae) species in the Indo-Burma region. Forests 13, 1420. [35] Garroway, C.J., Bowman, J., Cascaden, T.J., et al., 2010. Climate change induced hybridization in flying squirrels. Glob. Change Biol. 16, 113-121. [36] Gerard, M., Vanderplanck, M., Wood, T., et al., 2020. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 4,77-86. [37] Ghana, S., Suleman, N., Compton, S.G., 2015a. Ability to gall:The ultimate basis of host specificity in fig wasps? Ecol. Entomol. 40, 280-291. [38] Ghana, S., Suleman, N., Compton, S.G., 2015b. A comparison of pollinator fig wasp development in figs of Ficus montana and its hybrids with Ficus asperifolia. Entomol. Exp. Appl. 156, 225-237. [39] Goldschmidt, R., 1933. Some aspects of evolution. Science 78, 539-547. [40] Gonzalez-Megias, A., Gomez, J.M., Sanchez-Pinero, F., 2005. Regional dynamics of a patchily distributed herbivore along an altitudinal gradient. Ecol. Entomol. 30, 706-713. [41] Grant, P.R., Grant, R., 1992. Hybridization of bird species. Science 256, 193-197. [42] Grant, V., 1981. Plant speciation (2nd ed.). New-York:Columbia University Press. [43] Grass, I., Jauker, B., Steffan-Dewenter, I., et al., 2018. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408-1417. [44] Grison-Pige, L., Bessiere, J.M., Hossaert-McKey, M., 2002. Specific attraction of fig-pollinating wasps:Role of volatile compounds released by tropical figs. J. Chem. Ecol. 28, 283-295. [45] Hagen, M., Kissling, W.D., Rasmussen, C., et al., 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89-120. [46] Harrison, R.D., 2000. Repercussions of El Nino:drought causes extinction and the breakdown of mutualism in Borneo. Proc. R. Soc. Lond. B 267, 911-915. [47] Harrison, R.D., 2001. Drought and the consequences of El Nino in Borneo:a case study of figs. Popul. Ecol. 43, 63-76. [48] Harrison, R.D., 2003. Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270(s1), S76-S79. [49] Hellberg, M.E., Prada, C., Tan, M.H., et al., 2016. Getting a grip at the edge:Recolonization and introgression in eastern Pacific Porites corals. J. Biogeogr. 43, 2147-2159. [50] Hegland, S.J., Nielsen, A., Lazaro, A., et al., 2009. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184-195. [51] Herre, E.A., Jander, K.C., Machado, C.A., 2008. Evolutionary ecology of figs and their associates:recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39, 439-458. [52] Hey, J., 2006. Recent advances in assessing gene flow between diverging populations and species. Curr. Opin. Genet. Dev. 16, 592-596. [53] Hossaert-McKey, M., Soler, C., Schatz, B., et al., 2010. Floral scents:Their roles in nursery pollination mutualisms. Chemoecology 20, 75-88. [54] Janzen, D.H., 1979. How to be a fig. Annu. Rev. Ecol. Syst., 10, 13-51. [55] Jousselin, E., Rasplus, J.Y., Kjellberg, F., 2003. Convergence and coevolution in a mutualism:Evidence from a molecular phylogeny of Ficus. Evolution 57, 1255-1269. [56] Kato, M., Takimura, A., Kawakita, A., 2003. An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc. Natl. Acad. Sci. USA 100, 5264-5267. [57] Kawecki, T.J., 2008. Adaptation to marginal habitats. Annu. Rev. Eco. Evol. Syst. 39, 321-342. [58] Khadari, B., Gibernau, M., Anstett, M.C., et al., 1995. When syconia wait for pollinators:the length of fig receptivity. Am. J. Bot. 82, 992-999. [59] Kiers, E.T., Palmer, T.M., Ives, A.R., et al., 2010. Mutualisms in a changing world:An evolutionary perspective. Ecol. Lett. 13, 1459-1474. [60] Kindler, C., Chevre, M., Ursenbacher, S., et al., 2017. Hybridization patterns in two contact zones of grass snakes reveal a new Central European snake species. Sci. Rep. 7, 7378. [61] Kusumi, J., Azuma, H., Tzeng, H.Y., et al., 2012. Phylogenetic analyses suggest a hybrid origin of the figs (Moraceae:Ficus) that are endemic to the Ogasawara (Bonin) Islands, Japan. Mol. Phylogenet. Evol. 63, 168-179. [62] Lepais, O., Petit, R.J., Guichoux, E., et al., 2009. Species relative abundance and direction of introgression in oaks. Mol. Ecol. 18, 2228-2242. [63] Li, S.Q., Huang, J.F., Darwell, C.T., et al., 2020. Development of 19 universal microsatellite loci for three closely related Ficus species (Moraceae) by high-throughput sequencing. Genes Genet. Syst. 95, 21-27. [64] Li, X., Wei, G.M., EI-Kassaby, Y.A., et al., 2021. Hybridization and introgression in sympatric and allopatric populations of four oak species. BMC Plant Biol. 21, 266. [65] Liao, W.J., Zhu, B.R., Li, Y.F., et al., 2019. A comparison of reproductive isolation between two closely related oak species in zones of recent and ancient secondary contact. BMC Evol. Biol. 19, 70. [66] Liu, C., Yang, D.R., Peng, Y.Q., 2011. Body size in a pollinating fig wasp and implications for stability in a fig-pollinator mutualism. Entomol. Exp. Appl. 138, 249-255. [67] Liu, G.X., Yang, D.R., Peng, Y.Q., et al., 2015a. Complementary fruiting phenologies facilitate sharing of one pollinator fig wasp by two fig trees. J. Plant Ecol. 8, 197-206. [68] Liu, M., Compton, S.G., Peng, F.E., et al., 2015b. Movements of genes between populations:Are pollinators more effective at transferring their own or plant genetic markers? Proc. R. Soc. Ser. B-Biol. Sci. 282, 20150290. [69] Machado, C.A., Robbins, N., Gilbert, M.T.P., et al., 2005. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc. Natl. Acad. Sci. USA 102(s1), 6558-6565. [70] Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. [71] McCauley, R.A., Cortes-Palomec, A.C., Oyama, K., 2019. Species diversification in a lineage of Mexican red oak (Quercus section Lobatae subsection Racemiflorae)-the interplay between distance, habitat, and hybridization. Tree Genet. Genomes 15, 27. [72] Mebert, K., 2008. Good species despite massive hybridization:genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Mol. Ecol. 17, 1918-1929. [73] Memmott, J., Craze, P.G., Waser, N.M., et al., 2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 1, 710-717. [74] Mitchell, N., Campbell, L.G., Ahern, J.R., et al., 2019. Correlates of hybridization in plants. Evol. Lett. 3, 570-585. [75] Moe, A.M., Rossi, D.R., Weiblen, G.D., 2011. Pollinator sharing in dioecious figs (Ficus:Moraceae). Biol. J. Linn. Soc. 103, 546-558. [76] Muhlfeld, C., Kovach, R.P., Jones, L.A., et al., 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4, 620-624. [77] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2017. Vegan:Community Ecology Package. R Package Version 2.4-5. [78] Parrish, T.L., Koelewijn, H.P., van Dijk, P.J., et al., 2003. Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. Biotropica 35, 333-343. [79] Patel, A., 1996. Variation in a mutualism:Phenology and the maintenance of gynodioecy in two Indian fig species. J. Ecol. 84, 667-680. [80] Patel, A., Hossaert-McKey, M., 2000. Components of reproductive success in two dioecious fig species, Ficus exasperata and Ficus hispida. Ecology 81, 2850-2866. [81] Peakall, R., Smouse, P.E., 2012. GenAIEx 6.5:Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537-2539. [82] Pellmyr, O., 2003. Yuccas, yucca moths, and coevolution:A review. Ann. Mo. Bot. Gard. 90, 35-55. [83] Peng, Y.Q., Compton, S.G.,Yang, D.R., 2010. The reproductive success of Ficus altissima and its pollinator in a strongly seasonal environment:Xishuangbanna, Southwestern China. Plant Ecol. 209, 227-236. [84] Porto-Hannes, I., Burlakova, L.E., Zanatta, D.T., et al., 2021. Boundaries and hybridization in a secondary contact zone between freshwater mussel species (Family:Unionidae). Heredity 126, 955-973. [85] Pothasin, P., Compton, S.G., Wangpakapattanawong, P., 2014. Riparian Ficus tree communities:The distribution and abundance of riparian fig trees in Northern Thailand. PLoS ONE 9, e108945. [86] Pothasin, P., Compton, S.G., Wangpakapattanawong, P., 2016. Seasonality of leaf and fig production in Ficus squamosa, a fig tree with seeds dispersed by water. PLoS ONE 11, e0152380. [87] Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. [88] Rafferty, N.E., CaraDonna, P.J., Bronstein, J.L., 2015. Phenological shifts and the fate of mutualisms. Oikos 124, 14-21. [89] Ramirez, B.W., 1986. Artificial hybridization and self-fertilization in Ficus (Moraceae). Brenesia 25, 265-272. [90] Ramirez, B.W., 1994. Hybridization of Ficus religiosa with F. septica and F. aurea (Moraceae). Rev. Biol. Trop. 4, 339-342. [91] Ramirez, B.W., Montero, S.J., 1988. Ficus microcarpa L., F. benjamina L. and other species introduced in the New World, their pollinators (Agaonidae) and other fig wasps. Rev. Biol. Trop. 36, 441-446. [92] Renoult, J.P., Kjellberg, F., Grout, C., et al., 2009. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evol. Biol. 9, 248. [93] Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914. [94] Schweiger, O., Biesmeijer, J.C., Bommarco, R., et al., 2010. Multiple stressors on biotic interactions:How climate change and alien species interact to affect pollination. Biol. Rev. 85, 777-795. [95] Schweiger, O., Settele, J., Kudrna, O., et al., 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472-3479. [96] Seehausen, O., 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198-207. [97] Souto-Vilaros, D., Proffit, M., Buatois, B., et al., 2018. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256-2273. [98] Spencer, H., Weiblen, G., Flick B., 1996. Phenology of Ficus variegata in a seasonal wet tropical forest at Cape Tribulation, Australia. J. Biogeogr. 23, 467-475. [99] Starr, T.N., Gadek, K.E., Yoder, J.B., et al., 2013. Asymmetric hybridization and gene flow between Joshua trees (Agavaceae:Yucca) reflect differences in pollinator host specificity. Mol. Ecol. 22, 437-449. [100] Strelkov, P., Nikula, R., Vainola, R., 2007. Macoma balthica in the White and Barents Seas:Properties 769 of a widespread marine hybrid swarm (Mollusca:Bivalvia). Mol. Ecol. 16, 4110-4127. [101] Su, Z.H., Sasaki, A., Kusumi, J., et al., 2022. Pollinator sharing, copollination, and speciation by host shifting among six closely related dioecious fig species. Commun. Biol. 5, 284. [102] Svensson, G.P., Okamoto, T., Kawakita, A., et al., 2010. Chemical ecology of obligate pollination mutualisms:Testing the 'private channel' hypothesis in the Breynia-Epicephala association. New Phytol. 186, 995-1004. [103] Tsai, L., Hayakawa, H., Fukuda, T., et al., 2015. A breakdown of obligate mutualism on a small island:An interspecific hybridization between closely related fig species (Ficus pumila and Ficus thunbergii) in Western Japan. Am. J. Plant Sci. 6, 126-131. [104] Vaha, J.P., Primmer, C.R., 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63-72. [105] van Noort, S., Compton, S.G., 1996. Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. J. Biogeogr. 23, 415-424. [106] Verkerke, W., 1989. Structure and function of the fig. Experientia 45, 612-622. [107] Wachowiak, W., Zukowska, W.B., Wojkiewicz, B., et al., 2016. Hybridization in contact zone between temperate European pine species. Tree Genet. Genomes 12, 48. [108] Walls, S.C., 2009. The role of climate in the dynamics of a hybrid zone in Appalachian salamanders. Glob. Change Biol. 15, 1903-1910. [109] Wang, G., Cannon, C.H., Chen, J., 2016. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. Ser. B-Biol. Sci. 283, 20152963. [110] Wang, G., Zhang, X.T., Herre, E.A., et al., 2021. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat. Commun. 12, 1-14. [111] Wang, R., Ai, B., Gao, B.Q., et al., 2009. Spatial genetic structure and restricted gene flow in a functionally dioecious fig, Ficus pumila L. var. pumila (Moraceae). Popul. Ecol. 51, 307-315. [112] Ware, A.B., Compton, S.G., 1992. Breakdown of pollinator specificity in an African fig tree. Biotropica 24, 544-549. [113] Ware, A.B., Compton, S.G., 1994a. Responses of fig wasps to host plant volatile cues. J. Chem. Ecol. 20, 785-802. [114] Ware, A.B., Compton, S.G., 1994b. Dispersal of adult female fig wasps. 1. Arrivals and departures. Entomol. Exp. Appl. 73, 221- 229. [115] Ware, A.B. Compton, S.G., 1994c. Dispersal of adult female fig wasps. 2. Movements between trees. Entomol. Exp. Appl. 73, 231- 238. [116] Ware, A.B., Kaye, P.T., Compton, S.G., et al., 1993. Fig volatiles:Their role in attracting pollinators and maintaining pollinator specificity. Plant Syst. Evol. 186, 147-156. [117] Warren, M., Robertson, M., Greeff, J., 2010. A comparative approach to understanding factors limiting abundance patterns and distributions in a fig tree-fig wasp mutualism. Ecography 33, 148-158. [118] Wei, Z.D., Kobmoo, N., Cruaud, A., et al., 2014. Genetic structure and hybridization in the species group of Ficus auriculata:Can closely related sympatric Ficus species retain their genetic identity while sharing pollinators? Mol. Ecol. 23, 3538-3550. [119] Whitney, K.D., Ahern, J.R., Campbell, L.G., et al., 2010. Patterns of hybridization in plants. Perspect. Plant Ecol. Evol. Syst. 12, 175-182. [120] Yoder, J.B., Smith, C.I., Rowley, D.J., et al., 2013. Effects of gene flow on phenotype matching between two varieties of Joshua tree (Yucca brevifolia; Agavaceae) and their pollinators. J. Evol. Biol. 26, 1220-1233. [121] Yu, H., Nason, J.D., 2013. Nuclear and chloroplast DNA phylogeography of Ficus hirta:Obligate pollination mutualism and constraints on range expansion in response to climate change. New Phytol. 197, 276-289. [122] Yu, H., Zhang, Z.W., Liu, L., et al., 2022. Asymmetric sharing of pollinator fig wasps between two sympatric dioecious fig trees:A reflection of supply and demand or differences in the size of their figs? Bot. Stud. 63, 7. [123] Zhang, Y., Peng, Y.Q., Compton, S.G., et al., 2014. Premature attraction of pollinators to inaccessible figs of Ficus altissima:a search for ecological and evolutionary consequences. PLoS ONE 9, e86735. [124] Zhou, Z.K., Gilbert, M.G., 2003. Flora of China. Volume 5:Moraceae. |