[1] Adams, M., Raadik, T.A., Burridge, C.P., et al., 2014. Global biodiversity assessment and hyper-cryptic species complexes:more than one species of elephant in the room? Syst. Biol. 63, 518-533. [2] Al-Younis, I., Moosa, B., Kwiatkowski, M., et al., 2021. Functional crypto-adenylate cyclases operate in complex plant proteins. Front. Plant Sci. 12, 711749. [3] Alexa, A., Rahnenfuhrer, J., 2022. topGO:Enrichment Analysis for Gene Ontology. R Package Version 2.48.0. [4] Alexander, D.H., Lange, K., 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12, 1-6. [5] Allendorf, F.W., Hohenlohe, P.A., Luikart, G., 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697-709. [6] An, Z., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66. [7] Babbar, R., Tiwari, L.D., Mishra, R.C., et al., 2023. Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing. Plant Sci. 330, 111639. [8] Bartrina, I., Jensen, H., Novak, O., et al., 2017. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiol. 173, 1783-1797. [9] Bencivenga, S., Serrano-Mislata, A., Bush, M., et al., 2016. Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis. Dev. Cell 39, 198-208. [10] Bickford, D., Lohman, D.J., Sodhi, N.S., et al., 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148-155. [11] Bolnick, D.I., Svanback, R., Fordyce, J.A., et al., 2003. The ecology of individuals:incidence and implications of individual specialization. Am. Nat. 161, 1-28. [12] Brodersen, J., Seehausen, O., 2014. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968-983. [13] Browning, S.R., Browning, B.L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097. [14] Camacho, C., Coulouris, G., Avagyan, V., et al., 2009. BLAST+:architecture and applications. BMC Bioinformatics 10, 1-9. [15] Cao, Y.N., Zhu, S.S., Chen, J., et al., 2020. Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). Evol. Appl. 13, 2038-2055. [16] Chen, H., Patterson, N., Reich, D., 2010. Population differentiation as a test for selective sweeps. Genome Res. 20, 393-402. [17] Chen, J.M., Zhao, S.Y., Liao, Y.Y., et al., 2015. Chloroplast DNA phylogeographic analysis reveals significant spatial genetic structure of the relictual tree Davidia involucrata (Davidiaceae). Conserv. Genet. 16, 583-593. [18] Chen, S., Zhou, Y., Chen, Y., et al., 2018. fastp:an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890. [19] Chen, J., Hao, Z., Guang, X., et al., 2019. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat. Plants 5, 18-25. [20] Chen, Y., Ma, T., Zhang, L., et al., 2020. Genomic analyses of a "living fossil":The endangered dove-tree. Mol. Ecol. Resour. 20, 756-769. [21] Chen, X., MacGregor, D.R., Stefanato, F.L., et al., 2023. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy. Nat. Commun. 14, 2220. [22] Cingolani, P., Platts, A., Wang, L.L., et al., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff:SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92. [23] Crandall, K.A., Bininda-Emonds, O.R., Mace, G.M., et al., 2000. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290-295. [24] Cuevas-Velazquez, C.L., Vellosillo, T., Guadalupe, K., et al., 2021. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nat. Commun. 12, 5438. [25] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [26] Emms, D., Kelly, S., 2019. OrthoFinder2:fast and accurate phylogenomic orthology analysis from gene sequences. Genome Biol. 20, 238. [27] Excoffier, L., Marchi, N., Marques, D.A., et al., 2021. fastsimcoal2:demographic inference under complex evolutionary scenarios. Bioinformatics 37, 4882-4885. [28] Eyde, R.H., 1997. Fossil record and ecology of Nyssa (Cornaceae) Bot. Rev. 63, 97-123. [29] Feckler, A., Zubrod, J.P., Thielsch, A., et al., 2014. Cryptic species diversity:an overlooked factor in environmental management? J. Appl. Ecol. 51, 958-967. [30] Feng, L., Xu, Z.Y., Wang, L., 2019. Genetic diversity and demographic analysis of an endangered tree species Diplopanax stachyanthus in subtropical China:implications for conservation and management. Conserv. Genet. 20, 315-327. [31] Fick, S.E., Hijmans, R.J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. [32] Frankham, R., Ballou, J. D., & Briscoe, D. A., 2010. Introduction to Conservation Genetics (2nd ed.). Cambridge University Press, UK. [33] Frichot, E., Francois, O., 2015. LEA:An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925-929. [34] Funk, W.C., McKay, J.K., Hohenlohe, P.A., et al., 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489-496. [35] He, Z.C., Li, J.Q., Wang, H.C., 2004. Karyomorphology of Davidia involucrata and Camptotheca acuminata, with special reference to their systematic positions. Bot. J. Linn. Soc. 144, 193-198. [36] Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. [37] Hewitt, G.M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B-Biol. Sci. 359, 183-195. [38] Hu, H., Yang, Y., Li, A., et al., 2022. Genomic divergence of Stellera chamaejasme through local selection across the Qinghai-Tibet Plateau and northern China. Mol. Ecol. 31, 4782-4796. [39] Jorger, K.M., Schrodl, M., 2013. How to describe a cryptic species? Practical challenges of molecular taxonomy. Front. Zool. 10, 1-27. [40] Kang, M., Fu, R., Zhang, P., et al., 2021. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nat. Commun. 12, 3531. [41] Keightley, P.D., Jackson, B.C., 2018. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics 209, 897-906. [42] Letunic, I., Bork, P., 2007. Interactive Tree Of Life (iTOL):an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127-128. [43] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [44] Li, H., Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature 475, 493-496. [45] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. [46] Li, X., Li, Z., He, C., et al., 2012. Genetic diversity of the endangered Davidia involucrata by AFLP analysis. Acta Hort. Sin. 39, 992-998. [47] Li, J.L., Zhong, L.L., Wang, J., et al., 2021. Genomic insights into speciation history and local adaptation of an alpine aspen in the Qinghai-Tibet Plateau and adjacent highlands. J. Syst. Evol. 59, 1220-1231. [48] Liu, Q., Vetukuri, R.R., Xu, W., et al., 2019. Transcriptomic responses of dove tree (Davidia involucrata Baill.) to heat stress at the seedling stage. Forests 10, 656. [49] Liu, P.L., Zhang, X., Mao, J.F., et al., 2020. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biol. 21, 1-30. [50] Luo, S., He, Y., Ning, G., et al., 2011. Genetic diversity and genetic structure of different populations of the endangered species Davidia involucrata in China detected by inter-simple sequence repeat analysis. Trees 25, 1063-1071. [51] Lynch, M., Conery, J., Burger, R., 1995. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489-518. [52] Ma, Q., Du, Y. J., Chen, N., et al., 2015. Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Syst. Bot. 40, 796-810. [53] Malinova, I., Kunz, H.H., Alseekh, S., et al., 2014. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PloS One 9, e112468. [54] Manchester, S.R., Chen, Z.D., An-Ming, L.U., et al., 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J. Syst. Evol. 47, 1-42. [55] Mao, K., Liu, J., 2012. Current 'relicts' more dynamic in history than previously thought. New Phytol. 196, 329-331. [56] McKenna, A., Hanna, M., Banks, E., et al., 2010. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. [57] Moritz, C., 1994. Defining 'evolutionarily significant units' for conservation. Trends Ecol. Evol. 9, 373-375. [58] Mou, W., Kao, Y.T., Michard, E., et al., 2020. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nat. Commun. 11, 4082. [59] Mourrain, P., Beclin, C., Elmayan, T., et al., 2000. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533-542. [60] Mu, W., Wei, J., Yang, T., et al., 2020. The draft genome assembly of the critically endangered Nyssa yunnanensis, a plant species with extremely small populations endemic to Yunnan Province, China. Gigabyte 1-12. [61] Naciri, Y., Linder, H.P., 2015. Species delimitation and relationships:the dance of the seven veils. Taxon 64, 3-16. [62] Oksanen, J., Blanchet, F., Kindt, R., et al., 2017. Vegan:community ecology package. https://cran.r-project.org/web/packages/vegan/index.html. [63] Palsboell, P.J., Berube, M., Allendorf, F.W., 2007. Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11-16. [64] Pante, E., Puillandre, N., Viricel, A., et al., 2015. Species are hypotheses:avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525-544. [65] Pauls, S.U., Nowak, C., Balint, M., et al., 2013. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925-946. [66] Petit, R.J., El Mousadik, A., Pons, O., 1998. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844-855. [67] Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., et al., 2003. Glacial refugia:hotspots but not melting pots of genetic diversity. Science 300, 1563-1565. [68] Pfenninger, M., Schwenk, K., 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol.7, 1-6. [69] Price, MN, Dehal, et al., 2010. FastTree 2-Approximately Maximum-Likelihood trees for large alignments. PloS One 5, e9490. [70] Purcell, S., Neale, B., Todd-Brown, K., et al., 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575. [71] Qi, X.S., Chen, C., Comes, H.P., et al., 2012. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytol. 196, 617-630. [72] Qiu, Y.X., Fu, C.X., Comes, H.P., 2011. Plant molecular phylogeography in China and adjacent regions:tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol. Phylogenet. Evol. 59, 225-244. [73] Robinson, J., Kyriazis, C.C., Yuan, S.C., et al., 2023. Deleterious variation in natural populations and implications for conservation genetics. Annu. Rev. Anim. Biosci. 11, 93-114. [74] Sang, Y., Long, Z., Dan, X., et al., 2022. Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nat. Commun. 13, 6541. [75] Scheffers, B.R., Joppa, L.N., Pimm, S.L., et al., 2012. What we know and don't know about Earth's missing biodiversity. Trends Ecol. Evol. 27, 501-510. [76] Schluter, D., 2000. The ecology of adaptive radiation Oxford Univ. Press Inc., New York, pp. 1-288. [77] Seehausen, O., 2009. Speciation affects ecosystems. Nature 458, 1122-1123. [78] Shang, H.Y., Li, Z.H., Dong, M., et al., 2015. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau. Sci. Rep. 5, 10216. [79] Shen, Y., Xia, H., Tu, Z., et al., 2022. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments. Mol. Ecol. 31, 916-933. [80] Song, C., Bao, M., 2006. Genetic diversity of RAPD mark for natural Davidia involucrata populations. Front. For. China 1, 95-99. [81] Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30,1312-1313. [82] Staneloni, R.J., Rodriguez-Batiller, M.J., Legisa, D., et al., 2009. Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A. Proc. Natl. Acad. Sci. U.S.A. 106, 13624-13629. [83] Sun, J.F., Gong, Y.B., Renner, S.S., et al., 2008. Multifunctional bracts in the dove tree Davidia involucrata (Nyssaceae:Cornales):rain protection and pollinator attraction. Am. Nat. 171, 119-124. [84] Tang, C.Q., Dong, Y.F., Herrando-Moraira, S., et al., 2017. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China. Sci. Rep. 7, 43822. [85] Torres-Cambas, Y., Ferreira, S., Cordero-Rivera, A., et al., 2017. Identification of evolutionarily significant units in the Cuban endemic damselfly Hypolestes trinitatis (Odonata:Hypolestidae). Conserv. Genet. 18, 1229-1234. [86] Treffon, P., Rossi, J., Gabellini, G., et al., 2022. Proteome profiling of a S-Nitrosoglutathione reductase (GSNOR) null mutant reveals that aldo-keto reductases form a new class of enzymes involved in nitric oxide homeostasis. FASEB J. 36, 1. [87] Velinov, V., Vaseva, I., Zehirov, G., et al., 2020. Overexpression of the NMig1 gene encoding a NudC domain protein enhances root growth and abiotic stress tolerance in Arabidopsis thaliana. Front. Plant Sci. 11, 815. [88] Wang, L., Abbott, R.J., Zheng, W., et al., 2009. History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau:Aconitum gymnandrum (Ranunculaceae). Mol. Ecol. 18, 709-721. [89] Wang, Z.W., Chen, S.T., Nie, Z.L., et al., 2015. Climatic factors drive population divergence and demography:insights based on the phylogeography of a riparian plant species endemic to the Hengduan Mountains and adjacent regions. PLoS One 10, e0145014. [90] Wang, Z., Jiang, Y., Bi, H., et al., 2021. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant. 14, 208-222. [91] Wu, Y., Yang, J., Yang, Y., et al., 2023. The genome sequence and demographic history of Przewalskia tangutica (Solanaceae), an endangered alpine plant on the Qinghai-Tibet Plateau. DNA Res. 30, dsad005. [92] Xue, Y., Prado-Martinez, J., Sudmant, P.H., et al., 2015. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242-245. [93] Yang, X., Kang, M., Yang, Y., et al., 2019. A chromosome-level genome assembly of the Chinese tupelo Nyssa sinensis. Sci. Data 6, 282. [94] Yang, Y., Zhang, L., Huang, X., et al., 2020. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One 15, e0228563. [95] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. [96] Zdobnov, E.M., Apweiler, R., 2001. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847-848. [97] Zhang, Q., Guo, Q., Xu, D., et al., 2000. Influence of climate changes on geographical distribution of Davidia involucrata, a precious and endangered species native to China. Sci. Silvae Sin. 36, 47-52. [98] Zhang, C., Dong, S.S., Xu, J.Y., et al., 2019. PopLDdecay:a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786-1788. [99] Zhang, X., Sun, Y., Landis, J.B., et al., 2020. Genomic insights into adaptation to heterogeneous environments for the ancient relictual Circaeaster agrestis (Circaeasteraceae, Ranunculales). New Phytol. 228, 285-301. [100] Zhang, C., Zhao, S., Li, Y.S., et al., 2022. Crystal structures of Arabidopsis thaliana GDP-D-Mannose pyrophosphorylase VITAMIN c DEFECTIVE 1. Front. Plant Sci. 13, 899738. [101] Zhao, Y.P., Fan, G., Yin, P.P., et al., 2019. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201. [102] Zhu, S., Chen, J., Zhao, J., et al., 2020. Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum. New Phytol. 228, 1674-1689. |