Plant Diversity ›› 2023, Vol. 45 ›› Issue (02): 156-168.DOI: 10.1016/j.pld.2022.10.003
• Articles • Previous Articles Next Articles
Xue Lia, Markus Ruhsamb, Yi Wanga, Hong-Ying Zhanga, Xiao-Yan Fana, Lei Zhanga, Jing Wanga, Kang-Shan Maoa
Received:
2022-07-22
Revised:
2022-10-10
Online:
2023-03-25
Published:
2023-06-13
Contact:
Jing Wang,E-mail:jingwang368@126.com;Kang-Shan Mao,E-mail:maokangshan@scu.edu.cn
Supported by:
Xue Li, Markus Ruhsam, Yi Wang, Hong-Ying Zhang, Xiao-Yan Fan, Lei Zhang, Jing Wang, Kang-Shan Mao. Wind-dispersed seeds blur phylogeographic breaks: The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin[J]. Plant Diversity, 2023, 45(02): 156-168.
Add to citation manager EndNote|Ris|BibTeX
[1] Amos, W., Hoffman, J.I., Frodsham, A., et al., 2007. Automated binning of microsatellite alleles: problems and solutions. Mol. Ecol. Notes 7, 10-14. [2] Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. [3] Bennett, K.D., Provan, J., 2008. What do we mean by “refugia”? Quat. Sci. Rev. 27, 2449-2455. [4] Bond, J.E., Hedin, M.C., Ramirez, M.G., et al., 2001. Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Mol. Ecol. 10, 899-910. [5] Cao, Y.N., Comes, H.P., Sakaguchi, S., et al., 2016. Evolution of east Asia’s Arcto-tertiary relict Euptelea (Eupteleaceae) shaped by late Neogene vicariance and Quaternary climate change. BMC Evol. Biol. 16, 66. [6] Chen, J.M., Zhao, S.Y., Liao, Y.Y., et al., 2015. Chloroplast DNA phylogeographic analysis reveals significant spatial genetic structure of the relictual tree Davidia involucrata (Davidiaceae). Conserv. Genet. 16, 583-593. [7] Cheng, H., Zhang, H., Spotl, C., et al., 2020. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. U.S.A. 117, 23408-23417. [8] Cheng, S., Zeng, W., Fan, D., et al. 2021. Subtle East-West phylogeographic break of Asteropyrum (Ranunculaceae) in subtropical China and adjacent areas. Diversity 13, 627. [9] Cornuet, J.M., Pudlo, P., Veyssier, J., et al., 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 8, 1187-1189. [10] Crisp, M.D., Trewick, S.A., Cook, L.G., 2011. Hypothesis testing in biogeography. Trends Ecol. Evol. 26, 66-72. [11] De Matthaeis, E., Davolos, D., Cobolli, M., et al., 2000. Isolation by distance in equilibrium and nonequilibrium populations of four Talitrid species in the Mediterranean sea. Evolution 54, 1606-1613. [12] Deng, T., Ding, L., 2015. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. Natl. Sci. Rev. 2, 417-437. [13] Di Rienzo, A., Peterson, A.C., Garza, J.C., et al., 1994. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. U.S.A. 91, 3166-3170. [14] Dieringer, D., Schlotterer, C., 2003. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167-169. [15] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [16] Drost, H.G., 2018. Philentropy: similarity and distance quantification between probability functions. J. Open Source Softw. 3, 765. [17] Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. [18] Dufresnes, C., Litvinchuk, S.N., Leuenberger, J., et al., 2016. Evolutionary melting pots: a biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (Hyla orientalis). Mol. Ecol. 25, 4285-4300. [19] Dupanloup, I., Schneider, S., Excoffier, L., 2002. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571-2581. [20] Earl, D.A., vonHoldt, B.M., 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359-361. [21] Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611-2620. [22] Excoffier, L., Lischer, H., 2010. ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564-567. [23] Fan D.M., Yue J.P., Nie Z.L., et al., 2013. Phylogeography of Sophora davidii (Leguminosae) across the ‘Tanaka-Kaiyong line’, an important phytogeographic boundary in southwest China. Mol. Ecol. 22, 4270-4288. [24] Fang X.M., Dupont-Nivet G., Wang C.S., et al., 2020. Revised chronology of central Tibet uplift (Lunpola basin). Sci. Adv. 6, eaba7298. [25] Favre, A., Packert, M., Pauls, S.U., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. [26] Felsenstein, J., 2005. PHYLIP (phylogeny inference package). R package version 3.6. http://evolution.genetics.washington.edu/phylip.html [27] Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. [28] Greenwood, P.J., 1980. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140-1162. [29] Guan, B.C., Fu, C.X., Qiu, Y.X., et al., 2010. Genetic structure and breeding system of a rare understory herb, Dysosma versipellis (Berberidaceae), from temperate deciduous forests in China. Am. J. Bot. 97, 111-122. [30] Guo, X.D., Wang, H.F., Bao, L., et al., 2014. Evolutionary history of a widespread tree species Acer mono in East Asia. Ecol. Evol. 4, 4332-4345. [31] Havrdova, A., Douda, J., Krak, K., et al., 2015. Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Mol. Ecol. 24, 4759-4777. [32] He, K., Gutierrez, E.E., Heming, N.M., et al., 2019. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains. J. Biogeogr. 46, 2232-2247. [33] He, K., Jiang, X.L., 2014. Sky islands of southwest China. I: an overview of phylogeographic patterns. Chin. Sci. Bull. 59, 585-597. [34] Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. [35] Hijmans, R., van Etten, J., 2012. Geographic Analysis and Modeling with Raster Data. R package version 3.5-2. https://rspatial.org/raster/ [36] Hijmans, R.J., Guarino, L., Cruz, M., et al., 2001. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 15-19. https://diva-gis.org/docs/pgr127_15-19.pdf [37] Hofmann, S., 2012. Population genetic structure and geographic differentiation in the hot spring snake Thermophis baileyi (Serpentes, Colubridae): indications for glacial refuges in southern-central Tibet. Mol. Phylogenet. Evol. 63, 396-406. [38] Hong, T., Ma, Z.L., Chen, J.S., 1987. Floral morphology of Populus lasiocarpa Oliv. and its phylogenetic position in Populus. J. Integr. Plant Biol. 29, 236-241. [39] Irwin, D.E., Irwin, J.H., Price, T.D., 2001. Ring species as bridges between microevolution and speciation. Genetica 112-113, 223-243. [40] Jablonski, N.G., 1993. Quaternary environments and the evolution of primates in East Asia, with notes on two new specimens of fossil Cercopithecidae from China. Folia Primatol. Int. J. Primatol. 60, 118-132. [41] Jiang, X.L., Jia, C., Dai, L.L., et al., 2015. Research on the growth characteristics of Populus lasiocarpa Oliv. In west Sichuan plateau. J. Sichuan For. Sci. Technol. 36, 13-17. [42] Kalnowskl, S.T., Taper, M.L., Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099-1106. [43] Kose, S., 2014. Glacial Advances in Asia, Europe, and North America. In: Smith, C. (Ed.), Encyclopedia of Global Archaeology. Springer, New York, NY, pp. 3041-3043. [44] Lang, K.Y., 1994. Studies on the distribution patterns of some significant genera in Orchid flora. J. Systemat. Evol. 32, 328. [45] Li, B.Y., Pan, B.T., 2002. Progress in paleogeographic study of the Tibetan Plateau. Geogr. Res. 21, 61-70. [46] Li, C.L., Kang, S.C., 2006. Review of studies in climate change over the Tibetan plateau. Acta Geograph. Sin. 61, 327-335. [47] Li, J., Fang, X., 1999. Uplift of the Tibetan Plateau and environmental changes. Chin. Sci. Bull. 44, 2117-2124. [48] Li, L., Abbott, R.J., Liu, B.B., et al., 2013. Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet plateau. Mol. Ecol. 22, 5237-5255. [49] Li, X.W., Li, J., 1997. The Tanaka-Kaiyong Line - an important floristic line for the study of the flora of East Asia. Ann. Mo. Bot. Gard. 84, 888-892. [50] Li, Y.H., Lu, Q., Wu, B., et al., 2011. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chin. J. Plant Ecol. 36, 88. [51] Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. [52] Liu, J., Moller, M., Provan, J., et al., 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. [53] Liu, J.Q., Duan, Y.W., Hao, G., et al., 2014. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J. Systemat. Evol. 52, 241-249. [54] Liu, Y.K., Xu, C., 2003. Modeling for the burial and subsidence history of the Sichuan Basin. Chin. J. Geophys. 46, 283-290. [55] Luan, H.H., Su, X.H., Zhang, B.Y., 2011. Research progress in genetic evaluation of Populus L. germplasm resources. Chin. Bull. Bot. 46, 586-595. [56] Ma, Q., Du, Y.J., Chen, N., et al., 2015. Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Syst. Bot. 40, 796-810. [57] Macaya-Sanz, D., Heuertz, M., Lopez-de-Heredia, U., et al., 2014. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars. Mol. Ecol. 21, 3593-3609. [58] Macqueen, P., Goldizen, A.W., Austin, J.J., et al., 2011. Phylogeography of the Pademelons (Marsupialia: Macropodidae: Thylogale) in new Guinea reflects both geological and climatic events during the Plio-Pleistocene. J. Biogeogr. 38, 1732-1747. [59] Manni, F., Guerard, E., Heyer, E., 2004. Geographic patterns of (Genetic, Morphologic, Linguistic) variation: how barriers can be detected by using Monmonier's Algorithm. Hum. Biol. 76, 173-190. [60] Mao, K.S., Wang, Y., Liu, J.Q., 2021. Evolutionary origin of species diversity on the Qinghai-Tibet Plateau. J. Systemat. Evol. 59, 1142-1158. [61] Meng, K., Wang, E., Wang, G., 2014. Uplift of the Emei Shan, western Sichuan basin: implication for eastward propagation of the Tibetan Plateau in early Miocene. J. Asian Earth Sci. 115, 29-39. [62] Mitsui, Y., Chen, S.T., Zhou, Z.K., et al., 2008. Phylogeny and biogeography of the Genus Ainsliaea (Asteraceae) in the Sino-Japanese region based on nuclear rDNA and plastid DNA sequence data. Ann. Bot. 101, 111-124. [63] Monahan, W.B., Pereira, R.J., Wake, D.B., 2012. Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species. BMC Biol. 10, 20. [64] Myers, N., Mittermeler, R.A., Mittermeler, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [65] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2020. Vegan: community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan [66] Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537-2539. [67] Pelletier, T.A., Carstens, B.C., 2018. Geographical range size and latitude predict population genetic structure in a global survey. Biol. Lett. 14, 20170566. [68] Petit, R.J., Duminil, J., Fineschi, S., et al., 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 14, 689-701. [69] Petit, R.J., Excoffier, L., 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386-393. [70] Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. [71] Picotte, J.J., Rosenthal, D.M., Rhode, J.M., et al., 2007. Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance. Oecologia 153, 821-832. [72] Piry, S., Luikart, G., Cornuet, J.M., 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502-503. [73] Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. [74] Puorto, G., Da Graca Salomao, M., Theakston, R.D.G., et al., 2001. Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography of lanceheaded pitvipers in the Brazilian Atlantic forest, and the status of Bothrops pradoi (Squamata: serpentes: Viperidae). J. Evol. Biol. 14, 527-538. [75] Qi, X.S., Chen, C., Comes, H.P., et al., 2012. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytol. 196, 617-630. [76] Qiao, L., Wen, G., Qi, Y., et al., 2018. Evolutionary melting pots and reproductive isolation: a ring-shaped diversification of an odorous frog (Odorrana margaratae) around the Sichuan Basin. Mol. Ecol. 27, 4888-4900. [77] Qiu, Y.X., Fu, C.X., Comes, H.P., 2011. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol. Phylogenet. Evol. 59, 225-244. [78] Qiu, Y.X., Guan, B.C., Fu, C.X., et al., 2009. Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Mol. Phylogenet. Evol. 51, 281-293. [79] Qu, J., Liu, N., Bao, X., et al., 2009. Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Mol. Phylogenet. Evol. 52, 125-132. [80] Ray, N., Currat, M., Excoffier, L., 2003. Intra-Deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76-86. [81] Rogers, A., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552-569. [82] Royden, L.H., Burchfiel, B.C., Van der Hilst, R.D., 2008. The geological evolution of the Tibetan Plateau. Science 321, 1054-1058. [83] Rozendaal, D.M.A., Hurtado, V.H., Poorter, L., 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct. Ecol. 20, 207-216. [84] Schroeder, H., Hoeltken, A.M., Fladung, M., 2012. Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers - essential for comprehensible and reliable poplar breeding. Plant Biol. 14, 374-381. [85] Sexton, J.P., Hangartner, S.B., Hoffmann, A.A., 2014. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68, 1-15. [86] Shi, Y.F., Li, J.J., Li, B.Y., et al., 1999. Uplift of the qinghai-Xizang (Tibetan) plateau and east Asia environmental change during late Cenozoic. Acta Geograph. Sin. 54, 10-21. [87] Slatkin, M., 1991. Inbreeding coefficients and coalescence times. Genet. Res. 58, 167-175. [88] Soltis, D.E., Gitzendanner, M.A., Strenge, D.D., et al., 1997. Chloroplast DNA intraspecific phylogeography of plants from the Pacific northwest of north America. Plant Systemat. Evol. 206, 353-373. [89] Song, X., Milne, R.I., Fan, X., et al., 2021. Blow to the Northeast? Intraspecific differentiation of Populus davidiana suggests a north-eastward skew of a phylogeographic break in East Asia. J. Biogeogr. 48, 187-201. [90] Spicer, R.A., Farnsworth, A., Su, T., 2020. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant. Divers. 42, 229-254. [91] Steig, E.J., 1999. Mid-holocene climate change. Science 286, 1485-1487. [92] Sun, Y., Hu, H.Q., Huang, H.W., et al., 2014. Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genet. Genomes 10, 1531-1539. [93] Sun, Y.X., Moore, M.J., Yue, L.L., et al., 2014. Chloroplast phylogeography of the east Asian Arcto-tertiary relict Tetracentron sinense (trochodendraceae). J. Biogeogr. 41, 1721-1732. [94] Tamura, K., Peterson, D., Peterson, N., et al., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. [95] Tanaka, T., 1954. Species Problem in Citrus: a Critical Study of Wild and Cultivated Units of Citrus, Based upon Field Studies in Their Native Homes. Japanese Society for the Promotion of Science, Tokyo. [96] Tang, L., Du, C.Q., Jiang, H.L., et al., 2013. Research on gene resources investigation and plus tree selection of Populus lasiocarpa in western Hubei. Hubei For. Sci. Technol. 42, 36-38. [97] Tian B., Zhou Z.L., Du F.K., et al. 2015. The Tanaka Line shaped the phylogeographic pattern of the cotton tree (Bombax ceiba) in southwest China. Biochem. Systemat. Ecol. 60, 150-157. [98] Tian, B., Fu, Y., Milne, R.I., et al., 2020. A complex pattern of post-divergence expansion, contraction, introgression, and asynchronous responses to Pleistocene climate changes in two Dipelta sister species from western China. J. Systemat. Evol. 58, 247-262. [99] Usinowicz, J., Chang-Yang, C.H., Chen, Y.Y., et al., 2017. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105-108. [100] Wang, E., Kirby, E., Furlong, K.P., et al., 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat. Geosci. 5, 640-645. [101] Wang, I.J., 2013. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403-3411. [102] Wang, I.J., Bradburd, G.S., 2014. Isolation by environment. Mol. Ecol. 23, 5649-5662. [103] Wang, C.B., Wang, T., Su, Y.J., 2014. Phylogeography of Cephalotaxus oliveri (Cephalotaxaceae) in relation to habitat heterogeneity, physical barriers and the uplift of the Yungui Plateau. Mol. Phylogenet. Evol. 80, 205-216. [104] Wang, P., Scherler, D., Jing, L.Z., et al., 2014. Tectonic control of Yarlung Tsangpo gorge revealed by a buried canyon in southern tibet. Science 346, 978-981. [105] Wang, P., Yao, H., Gilbert, K.J., et al., 2018. Glaciation-based isolation contributed to speciation in a Palearctic alpine biodiversity hotspot: evidence from endemic species. Mol. Phylogenet. Evol. 129, 315-324. https://doi.org/10.1016/j.ympev.2018.09.006 [106] Wang, W.M., 1994. Paleofloristic and paleoclimatic implications of Neogene Palynofloras in China. Rev. Palaeobot. Palynol. 82, 239-250. [107] Wang, Y.H., Comes, H.P., Cao, Y.N., et al., 2017. Quaternary climate change drives allo-peripatric speciation and refugial divergence in the Dysosma versipellis-pleiantha complex from different forest types in China. Sci. Rep. 7, 40261. [108] Wang, M., Zhang, L., Zhang, Z., et al., (2020). Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. New Phytol. 225, 1370-1382. [109] Wang, Y.Q., Feijo, A., Cheng, J.L., et al., 2021. Ring distribution patterns-diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Mol. Ecol. 30, 2641-2658. [110] Wen, Z.X., Wu, Y., Ge, D.Y., et al., 2017. Heterogeneous distributional responses to climate warming: evidence from rodents along a subtropical elevational gradient. BMC Ecol. 17, 17. [111] Wu, Z.Y., Wu, S.G., 1996. A proposal for a new floristic kingdom (realm) -the E. Asiatic kingdom, its delimitation and characteristics - ScienceOpen. Presented at the Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants, Higher Education Press, Beijing. [112] Xiao, J.H., Ding, X., Li, L., et al., 2020. Miocene diversification of a golden-thread nanmu tree species (Phoebe zhennan, Lauraceae) around the Sichuan Basin shaped by the East Asian monsoon. Ecol. Evol. 10, 10543-10557. [113] Xie, X.F., Yan, H.F., Wang, F.Y., et al., 2012. Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: past gradual expansion and geographical isolation. J. Systemat. Evol. 50, 284-294. [114] Xu, J., Deng, M., Jiang, X.L., et al., 2015. Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet. Genomes 11, 805. [115] Yan, H.F., Zhang, C.Y., Wang, F.Y., et al., 2012. Population expanding with the Phalanx model and lineages split by environmental heterogeneity: a case study of Primula obconica in Subtropical China. PLoS One 7, e41315. [116] Yang, A., Zhong, Y., Liu, S., et al., 2019. New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east-west lineage split and genetic mixture within western subtropical China. PeerJ 7, e6355. [117] Ye, J.W., Zhang, Y., Wang X.J., et al., 2017. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region. Chin. J. Plant Ecol. 41, 1003-1019. [118] Ying, L.X., Zhang, T.T., Chiu, C.A., et al., 2016. The phylogeography of Fagus hayatae (Fagaceae): genetic isolation among populations. Ecol. Evol. 6, 2805-2816. [119] Young, N.D., Healy, J., 2003. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinf. 4, 6. [120] Zhang, L., Xi, Z.X., Wang, M.C., et al., 2018. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol. Evol. 8, 7817-7823. [121] Zhao, Y.J., Gong, X., 2015. Genetic divergence and phylogeographic history of two closely related species (Leucomeris decora and Nouelia insignis) across the 'Tanaka Line' in Southwest China. BMC Evol. Biol. 15, 134. [122] Zhao Y.M., Zhang L., 2015. The phylogeographic history of the self-pollinated herb Tacca chantrieri (Dioscoreaceae) in the tropics of mainland Southeast Asia. Biochem. Systemat. Ecol. 58, 139-148. [123] Zhou, S.Z., Wang, X.L., Wang, J., et al., 2006. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat. Int. 154-155, 44-51. [124] Zhou, W., Yan, F., Fu, J., et al., 2013. River islands, refugia and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau. Mol. Ecol. 22, 130-142. |
[1] | Siyue Xiao, Yunheng Ji, Jian Liu, Xun Gong. Genetic characterization of the entire range of Cycas panzhihuaensis (Cycadaceae) [J]. Plant Diversity, 2020, 42(01): 7-18. |
[2] | Rui Yang, Xiuyan Feng, Xun Gong. Genetic structure and demographic history of Cycas chenii (Cycadaceae), an endangered species with extremely small populations [J]. Plant Diversity, 2017, 39(01): 44-51. |
[3] | ZHANG Xue-Mei, HE Xing-Jin. Phylogeography of Angelica nitida (Apiaceae), an endemic to the QinghaiTibet Plateau [J]. Plant Diversity, 2013, 35(4): 505-512. |
[4] | WANG Xiao-Xiong-, YUE Ji-Pei-, SUN Hang-, LI Zhi-Min. Phylogeographical Study on Eriophyton wallichii (Labiatae) from Alpine Scree of QinghaiTibetan Plateau [J]. Plant Diversity, 2011, 33(6): 605-614. |
[5] | SONG Min-Shu-, LE Ji-Pei-, SUN Hang-, LI Zhi-Min. Phylogeographical Study on Primula poissonii (Primulaceae) from Hengduan Mountains [J]. Plant Diversity, 2011, 33(01): 91-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||