Plant Diversity ›› 2023, Vol. 45 ›› Issue (02): 147-155.DOI: 10.1016/j.pld.2022.04.002
• Articles • Previous Articles Next Articles
Shi-Yu Lva,b, Xia-Ying Yec, Zhong-Hu Lia, Peng-Fei Mab, De-Zhu Lib,d
Received:
2022-03-24
Revised:
2022-04-05
Online:
2023-03-25
Published:
2023-06-13
Contact:
Peng-Fei Ma,E-mail:mapengfei@mail.kib.ac.cn;De-Zhu Li,E-mail:dzl@mail.kib.ac.cn
Supported by:
Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia[J]. Plant Diversity, 2023, 45(02): 147-155.
Add to citation manager EndNote|Ris|BibTeX
[1] BPG, 2012. An updated tribal and subtribal classification for the Bambusoideae (Poaceae), in: Gielis, J. and Potters, G. (Eds.), Proceedings of the Ninth World Bamboo Congress. Antwerp, World Bamboo Organization, Belgium, pp. 3-27. [2] Cai, Z.M., Zhang, Y.X., Zhang, L.N., et al., 2012. Testing four candidate barcoding markers in temperate woody bamboos (Poaceae: Bambusoideae). J. Syst. Evol. 50, 527-539. [3] CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106, 12794-12797. [4] China Plant BOL Group, 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. U.S.A. 108, 19641-19646. [5] Chao, C.S., Chu, C.D. and Hsiung, W.Y., 1980. A revision of some genera and species of Chinese bamboos. Acta. Phytotax. Sin. 18, 20-36. [6] Chao, C.S. and Renvoize, S.A., 1989. A revision of the species described under Arundinaria (Gramineae) in Southeast Asia and Africa. Kew Bull. 44, 349-367. [7] Coissac, E., Hollingsworth, P.M., Lavergne, S., et al., 2016. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423-1428. [8] Du, F.K., Petit, R.J. and Liu, J.Q., 2009. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol. Ecol. 18, 1396-1407. [9] Ekblom, R. and Galindo, J., 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107, 1-15. [10] Fu, C.N., Mo, Z.Q., Yang, J.B., et al., 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404-414. [11] Fu, C.N., Wu, C.S., Ye, L.J., et al., 2019. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. [12] Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. [13] Guo, C., Guo, Z.H. and Li, D.Z., 2019. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae: Bambusoideae). Plant Divers. 41, 213-219. [14] Guo, C., Ma, P.F., Yang, G.Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [15] Guo, Z.H., Chen, Y.Y., Li, D.Z., et al., 2001. Genetic variation and evolution of the alpine bamboos (Poaceae: Bambusoideae) using DNA sequence data. J. Plant Res. 114, 315-322. [16] Guo, Z.H. and Li, D.Z., 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): inference from the sequences of GBSSI gene and ITS spacer. Mol. Phylogenet. Evol. 30, 1-12. [17] Hebert, P.D.N., Cywinska, A., Ball, S.L., et al., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B 270, 313-321. [18] Hollingsworth, P.M., Graham, S.W. and Little, D.P., 2011. Choosing and using a plant DNA barcode. PLoS One 6, e19254. [19] Hollingsworth, P.M., Li, D.Z., van der Bank, M., et al., 2016. Telling plant species apart with DNA: from barcodes to genomes. Philos. Trans. R. Soc. B 371, 20150338. [20] Hsueh, C.J. and Li, D.Z., 1987. New taxa of Bambusoideae from Sichuan and Yunnan, with discussion on concepts of related genera. J. Bamboo Res. 6, 16-19. [21] Janzen, D.H., 1976. Why Bamboos Wait So Long to Flower. Rev. Ecol. Syst. 7, 347-391. [22] Ji, Y.H., Liu, C.K., Yang, Z.Y., et al., 2019. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333-1345. [23] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [24] Kane, N., Sveinsson, S., Dempewolf, H., et al., 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320-329. [25] Katoh, K. and Standley, D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772-780. [26] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [27] Keng, P.C. and Wen, T.H., 1989. A preliminary study on bamboo classification according to the vegetative characters. J. Bamboo Res. 8, 17-29. [28] Kumar, S., Stecher, G., Li, M., et al., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547-1549. [29] Li, D.Z., Guo, Z.H., Stapleton, C.M.A., 2006. Fargesia, Yushania, in: Wu, Z.Y. and Raven, P.H. (Eds.), Flora of China (Poaceae). Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 74-96. [30] Li, D.Z., Zeng, C.X., 2015. Prospects for plant DNA barcoding. Biodiv. Sci. 23, 297-298. [31] Ma, P.F., Vorontsova, M.S., Nanjarisoa, O.P., et al., 2017. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics. BMC Plant Biol. 17, 260. [32] Ma, P.F., Zhang, Y.X., Zeng, C.X., et al., 2014. Chloroplast phylogenomic analyses resolve deep-Level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst. Biol. 63, 933-950. [33] McNeely, J.A., 1996. Biodiversity and bamboo genetic resources in Asia: in situ community-based and ex situ approaches to conservation. Chin. Biodivers. 7, 38-51. [34] Petit, R.J. and Excoffier, L., 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386-393. [35] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Meth. 15, 50. [36] Ruhsam, M., Rai, H.S., Mathews, S., et al., 2015. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol. Resour. 15, 1067-1078. [37] Smith, D.R., 2013. RNA-Seq data: a goldmine for organelle research. Brief. Funct. Genomics 12, 454-456. [38] Smith, M.A., Fisher, B.L. and Hebert, P.D.N., 2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos. Trans. R. Soc. B 360, 1825-1834. [39] Soderstrom, T.R., 1979. Another Name for the Umbrella Bamboo. Brittonia 31, 495-495. [40] Soderstrom, T.R., 1981. Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Mo. Bot. Gard. 68, 15-47. [41] Soderstrom, T.R. and Ellis, R.P., 1987. The position of bamboo genera and allies in a system of grass classifcation, in: Soderstrom, T.R., Hilu, K.W., Campbell, S. and Barkworth, M.E. (Eds.), Grass systematics and evolution. Institution Press, Washington, DC, pp. 225-238. [42] Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. [43] Stapleton, C.M.A., Chonghaile, G.N., Hodkinson, T.R., 2009. Molecular phylogeny of Asian woody bamboos: Review for the Flora of China. Bamboo Science and Culture: J. Am. Bamb. Soc. 22, 5-25. [44] Straub, S.C.K., Parks, M., Weitemier, K., et al., 2012. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am. J. Bot. 99, 349-364. [45] Triplett, J.K. and Clark, L.G., 2010. Phylogeny of the temperate bamboos (Poaceae: Bambusoideae: Bambuseae) with an emphasis on Arundinaria and allies. Syst. Bot. 35, 102-120. [46] Triplett, J.K., Clark, L.G., Fisher, A.E., et al., 2014. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 204, 66-73. [47] Wang, X.Q., Ye, X.Y., Zhao, L., et al., 2017. Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of temperate bamboos (Poaceae: Bambusoideae). Sci. Rep. 7, 11546. [48] Yang, H.M., Zhang, Y.X., Yang, J.B., et al., 2013. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae: Bambusoideae) inferred from four plastid and two nuclear markers. Mol. Phylogenet. Evol. 68, 340-356. [49] Yang, J.B., Li, D.Z. and Li, H.T., 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024-1031. [50] Ye, X.Y., Ma, P.F., Guo, C., et al., 2021. Phylogenomics of Fargesia and Yushania reveals a history of reticulate evolution. J. Syst. Evol. 59, 1183-1197. [51] Ye, X.Y., Ma, P.F., Yang, G.Q., et al., 2019. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 46, 2678-2689. [52] Yi, T.P., 1985a. Classifcation and distribution of the food bamboos of the giant panda (I). J. Bamboo Res. 4, 11-27. [53] Yi, T.P., 1985b. Classifcation and distribution of the food bamboos of the giant panda (II). J. Bamboo Res. 4, 20-45. [54] Yi, T.P., 1996. Fargesia, Yushania, in: Geng, P.C. and Wang, Z.P. (Eds.), Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp. 387-560. [55] Zeng, C.X., Zhang, Y.X., Triplett, J.K., et al., 2010. Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence. Mol. Phylogenet. Evol. 56, 821-839. [56] Zhang, D., Gao, F.L., Jakovlic, I., et al., 2020a. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. [57] Zhang, Y.X., Guo, C., Li, D.Z., 2020b. A new subtribal classification of Arundinarieae (Poaceae, Bambusoideae) with the description of a new genus. Plant Divers. 42, 127-134. [58] Zhang, L.N., Ma, P.F., Zhang, Y.X., et al., 2019a. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol. Phylogenet. Evol. 137, 222-235. [59] Zhang, Y.Q., Wang, X.M., Wu, A.L., et al., 2014. Merging Fargesia dracocephala into Fargesia decurvata (Bambusoideae, Poaceae): Implications from morphological and ITS sequence analyses. PLoS One 9, e101362. [60] Zhang, Y.Q., Zhou, Y., Hou, X.Q., et al., 2019b. Phylogeny of Fargesia (Poaceae: Bambusoideae) and infrageneric adaptive divergence inferred from three cpDNA and nrITS sequence data. Plant Syst. Evol. 305, 61-75. [61] Zhou, Y., Li, W.W., Zhang, Y.Q., et al., 2020. Extensive reticulate evolution within Fargesia (s.l.) (Bambusoideae: Poaceae) and its allies: Evidence from multiple nuclear markers. Mol. Phylogenet. Evol. 149, 106842. [62] Zhou, Y., Zhang, Y.Q., Xing, X.C., et al., 2019. Straight from the plastome: molecular phylogeny and morphological evolution of Fargesia (Bambusoideae: Poaceae). Front. Plant Sci. 10, 981. [63] Zhu, A.D., Guo, W.H., Gupta, S., et al., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209, 1747-1756. |
[1] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[2] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes [J]. Plant Diversity, 2023, 45(02): 125-132. |
[3] | Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae) [J]. Plant Diversity, 2022, 44(06): 519-529. |
[4] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species [J]. Plant Diversity, 2022, 44(05): 505-517. |
[5] | Shiou Yih Lee, Ke-Wang Xu, Cui-Ying Huang, Jung-Hyun Lee, Wen-Bo Liao, Yong-Hong Zhang, Qiang Fan. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription [J]. Plant Diversity, 2022, 44(03): 279-289. |
[6] | Mengqing Zhe, Le Zhang, Fang Liu, Yiwei Huang, Weishu Fan, Junbo Yang, Andan Zhu. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes [J]. Plant Diversity, 2022, 44(03): 316-321. |
[7] | Jia-Xin Yang, Shuai Peng, Jun-Jie Wang, Shi-Xiong Ding, Yan Wang, Jing Tian, Han Yang, Guang-Wan Hu, Qing-Feng Wang. Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae: Epidendroideae) from SW China [J]. Plant Diversity, 2021, 43(05): 409-419. |
[8] | Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers [J]. Plant Diversity, 2021, 43(04): 281-291. |
[9] | Bibo Yang, Liangda Li, Jianquan Liu, Lushui Zhang. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(03): 198-205. |
[10] | Hong Wu, Peng-Fei Ma, Hong-Tao Li, Guo-Xiong Hu, De-Zhu Li. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae) [J]. Plant Diversity, 2021, 43(01): 15-26. |
[11] | Han-Rui Bai, Oyetola Oyebanji, Rong Zhang, Ting-Shuang Yi. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae) [J]. Plant Diversity, 2021, 43(01): 27-34. |
[12] | Luxian Liu, Yonghua Zhang, Pan Li. Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data [J]. Plant Diversity, 2021, 43(01): 43-53. |
[13] | Kai-Wen Jiang, Rong Zhang, Zhong-Fu Zhang, Bo Pan, Bin Tian. DNA barcoding and molecular phylogeny of Dumasia (Fabaceae: Phaseoleae) reveals a cryptic lineage [J]. Plant Diversity, 2020, 42(05): 376-385. |
[14] | Nan Lin, Xu Zhang, Tao Deng, Jianwen Zhang, Aiping Meng, Hengchang Wang, Hang Sun, Yanxia Sun. Plastome sequencing of Myripnois dioica and comparison within Asteraceae [J]. Plant Diversity, 2019, 41(05): 315-322. |
[15] | Srinivasa R. Chaluvadi, Porter Young, Kentrez Thompson, Bochra Amina Bahri, Bhavesh Gajera, Subhash Narayanan, Robert Krueger, Jeffrey L. Bennetzen. Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm (Phoenix dactylifera) and related species [J]. Plant Diversity, 2019, 41(05): 330-339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||