Plant Diversity ›› 2023, Vol. 45 ›› Issue (06): 712-721.DOI: 10.1016/j.pld.2022.12.001
• Review • Previous Articles Next Articles
Shuai-Yu Zoua, Chen Fenga, Pu-Xin Gaoa, Tong-Jian Lib, Tian-Jiao Jiaa, Hongwen Huanga,c
Received:
2022-08-08
Revised:
2022-11-29
Online:
2023-11-25
Published:
2023-12-28
Contact:
Hongwen Huang,E-mail:huanghw@scbg.ac.cn
Supported by:
Shuai-Yu Zou, Chen Feng, Pu-Xin Gao, Tong-Jian Li, Tian-Jiao Jia, Hongwen Huang. Germplasm resources and genetic improvement of Akebia: A new fruit crop in China[J]. Plant Diversity, 2023, 45(06): 712-721.
Add to citation manager EndNote|Ris|BibTeX
[1] An, J.P., Ha, T.K.Q., Kim, J., et al., 2016. Protein tyrosine phosphatase 1B inhibitors from the stems of Akebia quinata. Molecules 21, 1091. [2] Chinese Pharmacopoeia Commission, 2020. Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing, China. [3] Christenhusz, M.J.M., 2012. An overview of Lardizabalaceae. Curtis’s Bot. Mag. 29, 235-276. [4] Christenhusz, M.J.M., Rix, M., 2012. Akebia quinata. Curtis’s Bot. Mag. 29, 284-289. [5] Du, Y., Jiang, Y., Zhu, X., et al., 2012. Physicochemical and functional properties of the protein isolate and major fractions prepared from Akebia trifoliata var. australis seed. Food Chem. 133, 923-929. [6] Editorial Commission of Chinese Flora of Chinese Academy of Sciences, 2001. Flora of China. Science Press, Beijing,China. [7] Gao, H., Wang, Z., 2006. Triterpenoid saponins and phenylethanoid glycosides from stem of Akebia trifoliata var. australis. Phytochemistry 67, 2697-2705. [8] Goulas, V., Manganaris, G.A., 2012. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chem. 131, 39-47. [9] Guan, J., Fu, P., Wang, X., et al., 2022. Assessment of the Breeding Potential of a Set of Genotypes Selected from a Natural Population of Akebia trifoliata (Three-Leaf Akebia). Horticulturae 8, 116. [10] Hickey, L.T., Hafeez, A.N., Robinson, H., et al., 2019. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744-754. [11] Huang, H., 2022. Discovery and Domestication of New Fruit Trees in the 21st Century. Plants 11, 2107. [12] Huang, H., Liang, J., Tan, Q., et al., 2021b. Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliata subsp. australis. Hort. Res. 8, 33. [13] Huang, H.P., Huang, L.Q., Wang, J., et al., 2013. Origin textual research, medicinal history and resources of Akebia. Chinese Traditional Patent Medicine 35, 2488-2490. [14] Huang, H.W., Zou, S.Y., Cheng, C.S., 2021a. Domestication and breeding strategy of wild fruit trees on track of plant introduction and domestication history. Journal of Plant Genetic Resources 22, 1463-1473. [15] Iwanaga, S., Warashina, T., Miyase, T., 2012. Triterpene saponins from the pericarps of Akebia trifoliata. Chem. Pharm. Bull. 60, 1264-1274. [16] Jiang, Y., Ding, Y., Wang, D., et al., 2020. Radio frequency-assisted enzymatic extraction of anthocyanins from Akebia trifoliata (Thunb.) Koidz. flowers: Process optimization, structure, and bioactivity determination. Ind. Crops Prod. 149, 112327. [17] Jiang, Y., Du, Y., Zhu, X., et al., 2012. Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. australis peel. Carbohyd. Polym. 87, 1663-1669. [18] Jiang, Y., Wu, Y., Yin, H., et al., 2022a. Metabolic and bioactive comparative analyses reveal the mechanisms of color changes in Akebia trifoliata (Thunb.) Koidz fruit. Sci. Hortic. 295, 110819. [19] Jiang, Y., Yin, H., Wang, D., et al., 2022b. Exploring the mechanism of Akebia trifoliata fruit cracking based on cell-wall metabolism. Food Res. Int. 157, 111219. [20] Karanjalker, G.R., Ravishankar, K.V., Shivashankara, K.S., et al., 2018. Influence of Bagging on Color, Anthocyanin and Anthocyanin Biosynthetic Genes in Peel of Red Colored Mango Cv. "Lily". Erwerbs-Obstbau 60, 281-287. [21] Kawagoe, T., Suzuki, N., 2002. Floral sexual dimorphism and flower choice by pollinators in a nectarless monoecious vine Akebia quinata (Lardizabalaceae). Ecol. Res. 17, 295-303. [22] Kawagoe, T., Suzuki, N., 2003. Flower-size dimorphism avoids geitonogamous pollination in a nectarless monoecious plant Akebia quinata. Intl. J. Plant Sci. 164, 893-897. [23] Kondo, S., Maeda, M., Kobayashi, S., et al., 2002. Expression of anthocyanin biosynthetic genes in malus sylvestris L. ‘Mutsu’ nonred apples. J. Hortic. Sci. Biotechnol 77, 718-723. [24] Li, L., Chen, X.Z., Yao, X.H., et al., 2010b. Geographic distribution and resource status of three important Akebia species. Journal of Wuhan Botanical Research 28, 497-506. [25] Li, L., Yao, X.H., Chen, X.Z., et al., 2009. Development and characterization of microsatellite loci in Chinese medicinal plant Akebia trifoliata ssp. australis and cross-species amplification in closely related taxa. Conserv. Genetics 10, 959-962. [26] Li, L., Yao, X.H., Zhong, C.H., et al., 2010a. Akebia: a potential new fruit crop in China. Hortscience 45, 4-10. [27] Li, T.J., Dong, J., Liao, L., et al., 2018. Isolation and characterization of microsatellite markers for Akebia trifoliata. Guihaia 38, 1117-1124. [28] Liu, C., Zhang, J., Zhang, N., et al., 2010. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Mol. Biol. Evol. 27, 1598-1611. [29] Liu, Y.C., Wang, H.M., Zeng, X.H., 2018. Research progress of active compounds and pharmacological effects in Akebia trifoliata (Thunb) Koidz stems. IOP Conference Series Earth and Environmental Science 185, 012034. [30] Lu, W.L., Yang, T., Song, Q.J., et al., 2019. Akebia trifoliata (Thunb.) Koidz seed extract inhibits human hepatocellular carcinoma cell migration and invasion in vitro. J. Ethnopharmacol. 234, 204-215. [31] Maciag, D., Dobrowolska, E., Sharafan, M., et al., 2021. Akebia quinata and Akebia trifoliata - a review of phytochemical composition, ethnopharmacological approaches and biological studies. J. Ethnopharmacol. 280, 114486. [32] Niu, J., Shi, Y., Huang, K., et al., 2020. Integrative transcriptome and proteome analyses provide new insights into different stages of Akebia trifoliata fruit cracking during ripening. Biotechnol. Biofuels 13, 149. [33] Niu, J., Sun, Z., Shi, Y., et al., 2021. Comparative Analysis of Akebia trifoliata Fruit Softening at Different Flesh Ripening Stages Using Tandem Mass Tag Technology. Front. Nutr. 8, 684271. [34] Niu, J., Wang, Y.J., Shi, Y.L., et al., 2019. Development of SSR markers via de novo transcriptome assembly in Akebia trifoliata (Thunb.) Koidz. Genome 62, 817-831. [35] Ochmian, I., Guan, T., Kubus, M., 2014. Description and assessment of chemical properties of fruits of the chocolate vine (five-leaf akebia) Akebia quinata (Houtt.) Decne and dead man’s fingers Decaisnea insignis (Griff.) Hokk.f. and Thomson, grown in Szczecin and in the Arboretum in Glinna. J. Elementol. 19, 1073-1084. [36] Peng, P., Jia, D., Cao, L., et al., 2021. Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells. J. Ethnopharmacol. 266, 113446. [37] Qi, W.H., Jiang, X.M., Du, L.M., et al., 2015. Genome-wide survey and analysis of microsatellite sequences in bovid species. PLoS One 10, e0133667. [38] Qin, H.N., 1997. A taxonomic revision of the Lardizabalaceae. Cathaya 8-9, 1-214. [39] Saure, M.C., 1990. External control of anthocyanin formation in apple. Sci. Hortic. 42, 181-218. [40] Tyas, J.A., Hofman, P.J., Underhill, S.J., et al., 1998. Fruit canopy position and panicle bagging affects yield and quality of ‘Tai So’ lychee. Sci. Hortic. 72, 203-213. [41] Wang, J., Ren, H., Xu, Q.L., et al., 2015. Antibacterial oleanane-type triterpenoids from pericarps of Akebia trifoliata. Food Chem. 168, 623-629. [42] Wang, X., Yu, N., Peng, H., et al., 2019. The profiling of bioactives in Akebia trifoliata pericarp and metabolites, bioavailability and in vivo anti-inflammatory activities in DSS-induced colitis mice. Food Funct. 10, 3977-3991. [43] Wu, H.X., Wang, S.B., Ma, X.W., et al., 2013. Effect of bagging on fruit quality in mango. Acta Hortic. 992, 587-592. [44] Xiao, T., Wang, L., Liu, T., et al., 2012. Analysis of volatile compounds in flowers of Akebia trifoliata by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry. Adv. Mater. Res. 602, 1313-1316. [45] Xin, M., Li, C.B., He, X.M., et al., 2021. Integrated metabolomic and transcriptomic analyses of quality components and associated molecular regulation mechanisms during passion fruit ripening. Sci. Hortic. 42, 181-218. [46] Yu, X., Zhong, S., Yang, H., et al., 2021. Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. Front. Plant Sci. 12, 758559. [47] Zhang, A., Zheng, J., Chen, X.,et al., 2021a. Comprehensive analysis of transcriptome and metabolome reveals the flavonoid metabolic pathway is associated with fruit peel coloration of melon. Molecules 26, 2830. [48] Zhang, K., Wang, X., Cheng, F., 2019. Plant polyploidy: origin, evolution, and its influence on crop domestication. Hortic. Plant J. 5, 231-239. [49] Zhang, X.H., Ren, Y., 2011. Comparative floral development in Lardizabalaceae (Ranunculales). Bot. J. Linn. Soc. 166, 171-184. [50] Zhang, Z., Yang, Q., Niu, Y., et al., 2020. Diversity analysis and establishment of core collection among Akebia trifoliata (Thunb.) Koidz. in Qinba mountain area of China using ISSR and SRAP markers. Genet. Resour. Crop Ev. 68, 1085-1102. [51] Zhang, Z., Zhang, J., Yang, Q., et al., 2021b. Genome survey sequencing and genetic diversity of cultivated Akebia trifoliata assessed via phenotypes and SSR markers. Mol. Biol. Rep. 48, 241-250. [52] Zhong, S., Chen, W., Yang, H., et al., 2022. Characterization of Microsatellites in the Akebia trifoliata Genome and Their Transferability and Development of a Whole Set of Effective, Polymorphic, and Physically Mapped Simple Sequence Repeat Markers. Front. Plant Sci. 13, 860101. [53] Zhong, Y., Wang, Y., Sun, Z., et al., 2021. Genetic diversity of a natural population of Akebia trifoliata (Thunb.) Koidz and extraction of a core collection using simple sequence repeat markers. Front. Genet. 12, 716498. [54] Zhou, Z.X., Gao, H.M., Ming, J.H., et al., 2020. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics 21, 734. [55] Zou, S., Gao, P., Jia, T., et al., 2022. Physicochemical Characteristics and Nutritional Composition during Fruit Ripening of Akebia trifoliata (Lardizabalaceae). Horticulturae 8, 326. [56] Zou, S., Yao, X., Zhong, C., et al., 2018. Genetic analysis of fruit traits and selection of superior clonal lines in Akebia trifoliate (Lardizabalaceae). Euphytica 214. [57] Zou, S., Yao, X., Zhong, C., et al., 2019. Effectiveness of recurrent selection in Akebia trifoliata (Lardizabalaceae) breeding. Sci. Hortic. 246, 79-85. |
[1] | DING Xin-, XIAO Jian-Hua. Investigation on Wild Resource of Valuable Timber Tree Phoebe zhennan (Lauraceae) [J]. Plant Diversity, 2015, 37(05): 629-639. |
[2] | ZHANG Da-Cai, LI Shuang-Zhi, HOU Xiong-Hui, ZHANG Ming-Qi. Morphology and Germination Features of Achenes of 12 Species of the Genus Saussurea (Asteraceae) in Western Sichuan Plateau [J]. Plant Diversity, 2013, 35(3): 273-279. |
[3] | WANG Chong-Yun-, YANG Bin-, HE Zhao-Rong. Analysis on the Geographical Distribution Characteristics of Angiopteridaceae and Its Causes in Yungui Plateau and Hengduan Mountains, China [J]. Plant Diversity, 2012, 34(4): 317-325. |
[4] | YANG Qing-Song , , XING Yao-Wu , , ZHOU Zhe-Kun. Modern Geographical Distribution of Tsuga and Its Climatic Conditions in the Asian Monsoon Region [J]. Plant Diversity, 2009, 31(05): 389-398. |
[5] | JIANG Nan, , GUAN Kai-Yun, WANG Zhong-Lang. Species Diversity and Geographical Distribution of Clematis (Ranunculaceae) in Yunnan [J]. Plant Diversity, 2007, 29(02): 145-154. |
[6] |
GUO Shu-Xian, WANG Dong-Mei, WU Xue-Ming, YUAN Jia-Zheng.
Geographical Distribution and Floristic Characters of Salix (Salicaceae) in Qinghai Province
[J]. Plant Diversity, 2007, 29(01): 1-6.
|
[7] | ZHANG Dao-Yuan, PAN Bo-Rong, YIN Lin-Ke. The Photogeographical Studies of Tamarix (Tamaricaceae) [J]. Plant Diversity, 2003, 25(04): 1-3. |
[8] | LUO Yan ZHOU Zhe-Kun. Phytogeography of Quercus subg.Cyclobalanopsis [J]. Plant Diversity, 2001, 23(01): 1-3. |
[9] | ZHU Chang - Shan YANG Hao - Wei ZHANG Lai - YOU. some New Recorded Plants to the Henan [J]. Plant Diversity, 1999, 21(01): 1-3. |
[10] | PENG Hua, LI, Heng. AROIDS FROM THE WULIANGSHAN MOUNTAINS [J]. Plant Diversity, 1998, 20(10): 1-3. |
[11] | Zhu Changshan, Jiang Wusheng, Guo Shengqian. CONTRIBUTIONS TO FLORA OF HENAN [J]. Plant Diversity, 1997, 19(04): 1-3. |
[12] | FANG Rui-Zheng MING Tien-Lu. THE FLORISTIC STUDY ON THE GENUS RHODODENDRON [J]. Plant Diversity, 1995, 17(04): 1-3. |
[13] | DING Tuo-Ya. ORIGIN , DIVERGENCE AND GEOGRAPHICAL DISTRIBUTION OF SALICACEAE [J]. Plant Diversity, 1995, 17(03): 1-3. |
[14] | Chen Zhiying Tao Guoda Xu Zaifu. A STUDY ON THE BIOLOGICAL CHARACTERISTICS AND THE ENDANGERING FACTORS OF ALSOPHILA SPINULOSA [J]. Plant Diversity, 1990, 12(02): 1-3. |
[15] | Li Heng Chen Changxiang Ding Jingkai. THE CHEMICAL CONSTITUENTS, DISTRIBUTION AND THE RESOURCE APPRAISAL OF THE GENUS PARIS [J]. Plant Diversity, 1988, 10(S1): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||