Plant Diversity ›› 2023, Vol. 45 ›› Issue (06): 621-629.DOI: 10.1016/j.pld.2023.05.002
• Review • Next Articles
Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong
Received:
2022-11-17
Revised:
2023-04-15
Online:
2023-11-25
Published:
2023-12-28
Contact:
De-Liang Kong,E-mail:deliangkong1999@126.com
Supported by:
Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong. The worldwide allometric relationship in anatomical structures for plant roots[J]. Plant Diversity, 2023, 45(06): 621-629.
Add to citation manager EndNote|Ris|BibTeX
[1] Falster, D. S., Warton, D. I., Wright, I. J. et al., 2006. SMATR, standardised major axis tests and routines, ver 2.0. [WWW document], http://www.bio.mq.edu.au/ecology/SMATR (last access: 22 November 2006). [2] Feild, T.S., Brodribb, T.J., Iglesias, A., et al., 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc Natl Sci. U. S.A. 108, 8363-8366. [3] Freschet, G.T., Cornelissen, J.H.C., Van Logtestijn, R.S.P., et al., 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol. 98, 362-373. [4] Gerhart, L.M., Ward, J.K., 2010. Plant responses to low CO2 of the past. New Phytol. 188, 674-695. [5] Gu, J.C., Wang, Y., Fahey, T.J., et al., 2017. Effects of root diameter, branch order, soil depth and season of birth on fine root life span in five temperate tree species. Eur J Forest Res. 136, 727-738. [6] Gu, J.C., Xu, Y., Dong, X.Y., et al., 2014. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiol. 34, 415-425. [7] Betekhtina, A.A., Tukova, D.E., Veselkin, D.V. Root structure syndromes of four families of monocots in the Middle Urals. Plant Divers. https://doi.org/10.1016/j.pld.2023.01.007. [8] Guo, D.L., Mitchell, R.J., Withington, J.M., et al., 2008a. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol. 96, 737-745. [9] Guo, D.L., Xia, M.X., Wei, X., et al., 2008b. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 180, 673-683. [10] Han, M.G., Zhu, B., 2021. Linking root respiration to chemistry and morphology across species. Glob Change Biol. 27, 190-201. [11] Cao, J.J., Chen, J., Yang, Q.P., et al., 2023. Leaf hydraulics coordinated with leaf economics and leaf size in mangrove species along a salinity gradient. Plant Divers. 45, 309–314. [12] Cao, J.J., Yang, Q.P., Chen, J., et al. 2022. Novel leaf-root coordination driven by leaf water storage tissues in mangroves, BioRxiv 501578 [Preprint]. https://doi.org/10.1101/2022.07.26.501578. [13] Holtta, T., Lintunen, A., Chan, T., et al., 2017. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Tree Physiol. 37, 851-868. [14] Hong, Y., Zhou, Q., Hao, Y., et al., 2022. Crafting the plant root metabolome for improved microbe-assisted stress resilience. New Phytol. 234, 1945-1950. [15] Joswig, J.S., Wirth, C., Schuman, M.C., et al., 2022. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol. 6, 36-+. [16] Jensen, K. H., Berg-Soerensen, K., Bruus, H., et al., 2016. Sap flow and sugar transport in plants. Rev Mod Phys. 88, 035007. [17] Kong, DL., Wang, J., Zeng, H., et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863-872. [18] Kong, DL., Wang, J., Wu, H., et al., 2019. Nonlinearity of root trait relationships and the root economics spectrum. Nat Commun. 10, 2203. [19] Kong, DL., Wang, J., Zeng, H., et al., 2017. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots. New Phytol. 213, 1569-1572. [20] Kong, DL., Wang, J.J., Valverde-Barrantes, O.J., et al., 2021. A framework to assess the carbon supply-consumption balance in plant roots. New Phytol. 229, 659-664. [21] Dong, X.Y., Wang, H.F., Gu, J.C., et al., 2015. Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest. Plant Soil 393, 215–227. [22] Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., et al., 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol. 104, 1299-1310. [23] Laughlin, D.C., Mommer, L., Sabatini, F.M., et al., 2021. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat Ecol Evol. 5, 1123-+. [24] Falster, D.S., Warton, D.I., Wright, I.J., et al., 2006. User's guide to SMATR: Standardised MajorAxis Tests & Routines Version 2.0, Copyright 2006. [25] Liese, R., Leuschner, C., Meier, I.C., 2019. The effect of drought and season on root life span in temperate arbuscular mycorrhizal and ectomycorrhizal tree species. J Ecol. 107, 2226-2239. [26] Lugli, L.F., Rosa, J.S., Andersen, K.M., et al., 2021. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116-128. [27] Ma, ZQ., Guo, DL., Xu, X., et al., 2018. Evolutionary history resolves global organization of root functional traits. Nature. 555, 94-97. [28] Martin, F.M., Uroz, S., Barker, D.G., 2017. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science. 356, eaad4501. [29] Martin, F., Aerts, A., Ahren, D., et al., 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 452, 88-92. [30] McCormack, M.L., Guo, D.L., Iversen, C.M., et al., 2017. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol. 215, 27-37. [31] Pineiro, J., Ochoa-Hueso, R., Drake, J.E., et al., 2020. Water availability drives fine root dynamics in aEucalyptuswoodland under elevated atmospheric CO(2) concentration. Funct Ecol. 34, 2389-2402. [32] Pregitzer, K.S., DeForest, J.L., Burton, A.J., et al., 2002, Fine root architecture of nine north American trees. Ecol Monogr. 72, 293-309. [33] Reich, P.B., 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol. 102, 275-301. [34] Rich, M.K., Vigneron, N., Libourel, C., et al., 2021. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science. 372, 864-+. [35] Hou, X.Q., 2007. Studies on mycorrhizal biology of Dendrobium Peking Union Medical college and Chinese. Academy of Medical sciences. [36] Hummel, I., Violle, C., Devaux, J., et al., 2007. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol. 173, 313–321. [37] Khan, H.U.R., Link, W., Hocking, T.J., et al., 2007. Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil. 292, 205-217. [38] Steudle, E., Carol A. P., 1998. How does water get through roots? J. Exp. Bot. 322, 775-788. [39] Stock, S.C., Koester, M., Boy, J., et al., 2021. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Sci Total Environ. 781, 146748. [40] Terrer, C., Vicca, S., Stocker, B.D., et al., 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science. 353, 72-74. [41] Terrer, C., Vicca, S., Stocker, B.D., et al., 2017. Response to Comment on “Mycorrhizal association as a primary control of the CO2 fertilization effect”. Science. 355, 358-358. [42] Valverde-Barrantes, O. J., Freschet, G.T., Roumet, C. et al., 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562-1573. [43] Terrer, C., Vicca, S., Stocker, B.D., et al., 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507-522. [44] Kong, D.L., Wang, J.J., Kardol, P, et al., 2016. Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences 13, 415–424. [45] Valverde-Barrantes, O. J, Authier, L, Schimann, H, et al., 2021. Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. Am J Bot. 108, 744-755. [46] Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., et al., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. [47] Wambsganss, J., Freschet, G.T., Beyer, F., et al., 2021. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct Ecol. 35, 1886-1902. [48] Wang, X.X., Du, T.T., Huang, J.L., et al., 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J Exp Bot. 69, 4033-4045. [49] Li, Z.Y., Wang, Y., Mu, L.Q., 2022. How Does Deforestation Affect the Growth of Cypripedium (Orchidaceae) Species? A Simulation Experiment in Northeast China. Forests 13, 166. [50] Weemstra, M., Mommer, L., Visser, E.J., et al., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159-1169. [51] Liu, B., He, J., Zeng, F., et al., 2016. Life span and structure of ephemeral root modules of different functional groups from a desert system. New Phytol 211, 103–112. [52] Liu, C., Xiang, W.H., Zou, L.M., et al., 2019. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant Soil 436, 347–364. [53] Long, Y.Q., 2013. The Research of the Linkage of Root Function with Root Branch Order. Peking University. [54] Weemstra, M., Kuyper, T. W., Sterck, F. J. & Umana, M. N. 2023. Incorporating belowground traits: avenues towards a whole-tree perspective on performance. Oikos. 2023, e08827. [55] Weigelt, A., Mommer, L., Andraczek, K., et al., 2021. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42-59. [56] Wen, Z.H., White, P.J., Shen, J.B., et al., 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 233, 1620-1635. [57] Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature. 428, 821-827. [58] Yan, H., Freschet, G.T., Wang, H.M., et al., 2022. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytol. 234, 1639-1653. [59] Zadworny, M., McCormack, M.L., Zytkowiak, R., et al., 2017. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob Change Biol. 23, 1218-1231. [60] Zhou, M., Guo, Y.M., Sheng, J., et al., 2022. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytol. 234, 422-434. [61] Zhou, Y.M., Jiang, X.J., Schaub, M., et al., Ten-year exposure to elevated CO2 increases stomatal number of Pinus koraiensis and P. sylvestriformis needles. Eur J Forest Res. 132, 899-908. [62] Zhu L.Q., Xu Y.X., Zhao L.J., et al., 2016. anatomical structure and environmental adaptability of Cymbidium cyperifolium in karst area. Guihaia. 36, 1179-1185+1164. [63] Steudle, E., Carol A. P., 1998. How does water get through roots? J. Exp. Bot. 322, 775-788. [64] Stock, S.C., Koester, M., Boy, J., et al., 2021. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: a cross-biome study on nutrient acquisition strategies. Sci. Total Environ. 781, 146748. [65] Terrer, C., Vicca, S., Stocker, B.D., et al., 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science. 353, 72-74. [66] Terrer, C., Vicca, S., Stocker, B.D., et al., 2017. Response to Comment on “Mycorrhizal association as a primary control of the CO2 fertilization effect”. Science. 355, 358-358. [67] Terrer, C., Vicca, S., Stocker, B.D., et al., 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507-522. [68] Valverde-Barrantes, O. J., Freschet, G.T., Roumet, C. et al., 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562-1573. [69] Valverde-Barrantes, O. J, Authier, L, Schimann, H, et al., 2021. Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. Am. J. Bot. 108, 744-755. [70] Valverde-Barrantes, O.J., Horning, A.L., Smemo, K.A., et al., 2016. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil 404, 1–12. [71] Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., et al., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. [72] Wahl, S., Ryser, P., 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytologist 148, 459–471. [73] Wambsganss, J., Freschet, G.T., Beyer, F., et al., 2021. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886-1902. [74] Wang, N., 2020. Effects of elevated atmospheric CO2 concentration on leaf and absorptive root and functional traits. In: seedlings of 17 temperate woody and herbaceous. Northeast Forestry University. [75] Wang, Y., Dong, X.Y., Wang, H.F., et al., 2016. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree physiology 361, 99–108. [76] Wang, X.X., Du, T.T., Huang, J.L., et al., 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J. Exp. Bot. 69, 4033-4045. [77] Weemstra, M., Mommer, L., Visser, E.J., et al., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159-1169. [78] Wang, H.F., Wang, Z.Q., Dong, X.Y., 2019. Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLoS One 14, e0215126. [79] Wang, Y.M., Wang, Y., Wang, S.Y., et al., 2020. Fine root anatomical and morphological traits of three temperate liana species in northeastern China. Journal of Beijing Forestry University 42, 42–49. [80] Weemstra, M., Kuyper, T. W., Sterck, F. J. & Umana, M. N. 2023. Incorporating belowground traits: avenues towards a whole-tree perspective on performance. Oikos. 2023, e08827. [81] Weigelt, A., Mommer, L., Andraczek, K., et al., 2021. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42-59. [82] Wen, Z.H., White, P.J., Shen, J.B., et al., 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 233, 1620-1635. [83] Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature. 428, 821-827. [84] Xiang, W., Huang, D.L., Zhu, S.D., 2022. absorptive root anatomical traits of 26 tropical and subtropical fern species. J Plant Ecol 46, 593–601. [85] Xu, Y., 2011. Fine root morphology, anatomy and tissue nitrogen and carbon of the first five order roots in twenty seven Chinese tropical hardwood tree species. Northeast Forestry University. [86] Xu, L.Y., 2021. Effects of nitrogen and phosphorus on leaf and root functional traits. In: seedlings of species. Northeast Forestry University. [87] Xu, H.W., Ren, Y., Liu, X.J., et al., 2022. Relationship between root tip diameter and anatomical traits among ten species of climbing plants in tropical forest. Molecular plant breeding 20, 987–995. [88] Yamauchi, T., Pedersen, O., Nakazono, M., et al., 2021. Key root traits of Poaceae for adaptation to soil water gradients. New Phytol 229, 3133–3140. [89] Yan, H., Freschet, G.T., Wang, H.M., et al., 2022. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytol. 234, 1639-1653. [90] Yuan, Y.M., Liu, J.Y., Gao, X.L., et al., 2022. Root traits of seven Stipa species and their relations with environmental factors in temperature grasslands. Acta Ecologica Sinica 21, 1–11. [91] Zadworny, M., McCormack, M.L., Zytkowiak, R., et al., 2017. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Global Change Biol. 23, 1218-1231. [92] Zhou, M., Bai, W.M., Zhang, Y.S., et al., 2018. Multi-dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. J Ecol. 106, 2320–2331. [93] Zhou, M., Guo, Y.M., Sheng, J., et al., 2022. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytol. 234, 422-434. [94] Zhu L.Q., Xu Y.X., Zhao L.J., et al., 2016. Anatomical structure and environmental adaptability of Cymbidium cyperifolium in karst area. Guihaia. 36, 1179-1185+1164. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||