Plant Diversity ›› 2024, Vol. 46 ›› Issue (01): 39-48.DOI: 10.1016/j.pld.2023.06.003
• Articles • Previous Articles Next Articles
Carlos A. Vargasa,b, Marius Bottinc, Tiina Sarkinend, James E. Richardsona,d,e, Marcela Celisf, Boris Villanuevab, Adriana Sancheza
Received:
2022-11-21
Revised:
2023-06-05
Online:
2024-01-25
Published:
2024-03-02
Contact:
Carlos A. Vargas,E-mail:carlosalbe.vargas@urosario.edu.co
Supported by:
Carlos A. Vargas, Marius Bottin, Tiina Sarkinen, James E. Richardson, Marcela Celis, Boris Villanueva, Adriana Sanchez. How to fill the biodiversity data gap: Is it better to invest in fieldwork or curation?[J]. Plant Diversity, 2024, 46(01): 39-48.
Add to citation manager EndNote|Ris|BibTeX
[1] Ahrends, A., Rahbek, C., Bulling, M.T., et al., 2011. Conservation and the botanist effect. Biol. Conserv. 144, 131-140. https://doi.org/10.1016/j.biocon.2010.08.008. [2] Ball-Damerow, J.E., Brenskelle, L., Barve, N., et al., 2019. Research applications of primary biodiversity databases in the digital age. bioRxiv 1-26. https://doi.org/10.1101/605071. [3] Bebber, D.P., Carine, M. a., Wood, J.R.I., et al., 2010. Herbaria are a major frontier for species discovery. Proc. Natl. Acad. Sci. USA 107, 22169-22171. https://doi.org/10.1073/pnas.1011841108. [4] Bernal, R., Grandstein, R., Celis, M. (Eds.), 2016. Catalogo de plantas y liquenes de Colombia, Catalogo de plantas y liquenes de Colombia. Editorial Universidad Nacional de Colombia, Bogota. [5] Cardoso, D., Sarkinen, T., Alexander, S., et al., 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 114, 10695-10700. https://doi.org/10.1073/pnas.1706756114. [6] Chao, A., Jost, L., 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533-2547. https://doi.org/10.1890/11-1952.1. [7] Chen, G., Kery, M., Zhang, J., et al., 2009. Factors affecting detection probability in plant distribution studies. J. Ecol. 97, 1383-1389. https://doi.org/10.1111/j.1365-2745.2009.01560.x. [8] Daru, B.H., Park, D.S., Primack, R.B., et al., 2018. Widespread sampling biases in herbaria revealed from large-scale digitization. New Phytol. 217, 939-955. https://doi.org/10.1111/nph.14855. [9] Elith, J., H. Graham, C., P. Anderson, R., et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography. 29, 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x. [10] Engemann, K., Enquist, B.J., Sandel, B., et al., 2015. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecol. Evol. 5, 807-820. https://doi.org/10.1002/ece3.1405. [11] Etter, A., 1998. Mapa general de ecosistemas de Colombia (1: 2,000,000). Instituto Alexander von Humboldt y PNUD, Bogota. [12] Feeley, K.J., 2015. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America. PLoS One 10, 1-17. https://doi.org/10.1371/journal.pone.0125629. [13] Feeley, K.J., 2012. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Global Change Biol. 18, 1335-1341. https://doi.org/10.1111/j.1365-2486.2011.02602.x. [14] Feeley, K.J., Silman, M.R., 2011a. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132-1140. https://doi.org/10.1111/j.1472-4642.2011.00813.x. [15] Feeley, K.J., Silman, M.R., 2011b. The data void in modelling current and future distributions of tropical species. Global Change Biol. 17, 626-630. https://doi.org/10.1111/j.1365-2486.2010.02239.x. [16] Feeley, K.J., Silman, M.R., 2010. Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering. J. Biogeogr. 37, 733-740. https://doi.org/10.1111/j.1365-2699.2009.02240.x. [17] Franco, A.M.A., Palmeirim, J.M., Sutherland, W.J., 2007. A method for comparing effectiveness of research techniques in conservation and applied ecology. Biol. Conserv. 134, 96-105. https://doi.org/10.1016/j.biocon.2006.08.008. [18] Gaira, K.S., Dhar, U., Belwal, O.K., 2011. Potential of herbarium records to sequence phenological pattern: a case study of Aconitum heterophyllum in the Himalaya. Biodivers. Conserv. 20, 2201-2210. https://doi.org/10.1007/s10531-011-0082-4. [19] Garcia Marquez, J., Dormann, C., Sommer, J.H., et al., 2012. A methodological framework to quantify the spatial quality of biological databases. Biodivers. Ecol. 4, 25-39. https://doi.org/10.7809/b-e.00057. [20] Gardner, T.A., Barlow, J., Araujo, I.S., et al., 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139-150. https://doi.org/10.1111/j.1461-0248.2007.01133.x. [21] Goodwin, Z.A., Harris, D.J., Filer, D., et al., 2015. Widespread mistaken identity in tropical plant collections. Curr. Biol. 25, R1066-R1067. https://doi.org/10.1016/j.cub.2015.10.002. [22] Gotelli, N.J., Colwell, R.K., 2011. Estimating species richness, in: Biological Diversity. Frontiers in Measurement and Assessment. Oxford University press, New York. [23] Graham, C.H., Ferrier, S., Huettman, F., et al., 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497-503. https://doi.org/10.1016/j.tree.2004.07.006. [24] Gueta, T., Carmel, Y., 2016. Quantifying the value of user-level data cleaning for big data: a case study using mammal distribution models. Ecol. Inf. 34, 139-145. https://doi.org/10.1016/j.ecoinf.2016.06.001. [25] Hopkins, M.J.G., 2007. Modelling the known and unknown plant biodiversity of the Amazon Basin. J. Biogeogr. 34, 1400-1411. https://doi.org/10.1111/j.1365-2699.2007.01737.x. [26] Hortal, J., de Bello, F., Diniz-Filho, J.A.F., et al., 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400. [27] Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451-1456. https://doi.org/10.1111/2041-210X.12613. [28] Lavoie, C., 2013. Biological collections in an ever changing world: herbaria as tools for biogeographical and environmental studies. Perspect. Plant Ecol. Evol. Systemat. 15, 68-76. https://doi.org/10.1016/j.ppees.2012.10.002. [29] Maldonado, C., Molina, C.I., Zizka, A., et al., 2015. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Global Ecol. Biogeogr. 24, 973-984. https://doi.org/10.1111/geb.12326. [30] Marsico, T.D., Krimmel, E.R., Carter, J.R., et al. 2020. Small herbaria contribute unique biogeographic records to county, locality, and temporal scales. Am. J. Bot. 107, 1577-1587. https://doi.org/10.1002/ajb2.1563. [31] McCarthy, M.A., Moore, J.L., Morris, W.K., et al., 2013. The influence of abundance on detectability. Oikos 122, 717-726. https://doi.org/10.1111/j.1600-0706.2012.20781.x. [32] Meyer, C., Weigelt, P., Kreft, H., et al., 2016. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992-1006. https://doi.org/10.1111/ele.12624. [33] Monfils, A.K., Krimmel, E.R., Bates, J.M., et al. 2020. Regional collections are an essential component of biodiversity research infrastructure. Bioscience 70, 1045-1047. https://doi.org/10.1093/biosci/biaa102. [34] Morueta-Holme, N., Engemann, K., Sandoval-Acuna, P., et al., 2015. Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. USA 112, 12741-12745. https://doi.org/10.1073/pnas.1509938112. [35] Negret, P.J., Allan, J., Braczkowski, A., et al., 2017. Need for conservation planning in postconflict Colombia. Conserv. Biol. 31, 499-500. https://doi.org/10.1111/cobi.12935. [36] Nualart, N., Ibanez, N., Soriano, I., et al., 2017. Assessing the relevance of herbarium collections as tools for conservation biology. Bot. Rev. 83, 303-325. https://doi.org/10.1007/s12229-017-9188-z. [37] O'Connell, A.F., Gilbert, A.T., Hatfield, J.S., 2004. Contribution of natural history collection data to biodiversity assessment in national parks. Conserv. Biol. 18, 1254-1261. https://doi.org/10.1111/j.1523-1739.2004.00336.x. [38] QGIS Development Team, 2015. QGIS Geographic Information System, Open Source Geospatial Foundation Project, version 3.8.0. [39] R Develpment Core Team, 2019. R: A Language and Environment for Statistical Computing (Version 3.6.1). http://www.r-project.org/. [40] Secretaria Distrital de Ambiente., 2007. Atlas ambiental de Bogota DC. Imprenta Nacional de Colombia. Bogota (Colombia). [41] Soberon, J., Jimenez, R., Golubov, J., et al., 2007. Assessing completeness of biodiversity databases at different spatial scales. Ecography 30, 152-160. https://doi.org/10.1111/j.0906-7590.2007.04627.x. [42] Soberon, J., Peterson, A.T., 2004. Biodiversity informatics: managing and applying primary biodiversity data. Philos. Trans. R. Soc. B Biol. Sci. 359, 689-698. https://doi.org/10.1098/rstb.2003.1439. [43] Sousa-Baena, M.S., Couto, L., Townsend, A., 2013. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers. Distrib. 20, 1-13. https://doi.org/10.1111/ddi.12136. [44] Suarez, A. V., Tsutsui, N.D., 2004. The value of museum collections for research and society. Bioscience 54, 66-74. [45] Syfert, M.M., Smith, M.J., Coomes, D.A., 2013. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One 8. https://doi.org/10.1371/journal.pone.0055158. [46] Targetti, S., Herzog, F., Geijzendorffer, I.R., et al., 2014. Estimating the cost of different strategies for measuring farmland biodiversity: evidence from a Europe-wide field evaluation. Ecol. Indicat. 45, 434-443. https://doi.org/10.1016/j.ecolind.2014.04.050. [47] Van der Hammen, T., 1986. La Sabana de Bogota y su lago en el Pleniglacial Medio. Caldasia 15, 249-262. [48] Vargas, C.A., Bottin, M., Sarkinen, T., et al., 2022. Environmental and geographical biases in plant specimen data from the Colombian Andes. Bot. J. Linn. Soc. 1-14. https://doi.org/10.1093/botlinnean/boac035. [49] Vogel, C., Bordignon, S.A. de L., Trevisan, R., et al., 2017. Implications of poor taxonomy in conservation. J. Nat. Conserv. 36, 10-13. https://doi.org/10.1016/j.jnc.2017.01.003. [50] Wieczorek, J., Guo, Q., Hijmans, R.J., 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int. J. Geogr. Inf. Sci. 18, 745-767. https://doi.org/10.1080/13658810412331280211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||