Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 181-193.DOI: 10.1016/j.pld.2023.08.003
• Articles • Previous Articles Next Articles
Jian-Feng Huanga, Clive T. Darwellb, Yan-Qiong Penga
Received:
2023-03-23
Revised:
2023-08-17
Online:
2024-03-25
Published:
2024-04-07
Contact:
Jian-Feng Huang,E-mail:huangjianfeng@xtbg.ac.cn;Yan-Qiong Peng,E-mail:pengyq@xtbg.ac.cn
Supported by:
Jian-Feng Huang, Clive T. Darwell, Yan-Qiong Peng. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species[J]. Plant Diversity, 2024, 46(02): 181-193.
Add to citation manager EndNote|Ris|BibTeX
[1] Abbott, R., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246. [2] Abbott, R.J., 2017. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J. Syst. Evol. 55, 238-258. [3] Anderson, E., Thompson, E., 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217-1229. [4] Arnold, M.L., 2015. Divergence with genetic exchange (2nd edn). Oxford University Press. [5] Bain, A., Chou, L.S., Tzeng, H.Y., et al., 2014. Plasticity and diversity of the phenology of dioecious Ficus species in Taiwan. Acta Oecol. 57, 124-134. [6] Berg, CC., Chantarasuwan B., 2007. A study on the taxonomy of some stoloniflorous species of Ficus subsection Sycocarpus (Moraceae) in Thailand and Malesia. Blumea 52, 313-326. [7] Berg, C.C., Pattharahirantricin, N., Chantarasuwan, B., 2011. Flora of Thailand. Volume 10, Part 4:Cecropiaceae and Moraceae, pp. 240. [8] Bernard, J., Brock, K.C., Tonnell, V., et al., 2020. New species assemblages disrupt obligatory mutualisms between figs and their pollinators. Front. Ecol. Evol. 8, 564653. [9] Bridle, J.R., Vines, T.H., 2007. Limits to evolution at range margins:When and why does adaptation fail? Trends Ecol. Evol. 22, 140-147. [10] Britch, S.C., Cain, M.L., Howard, D.J., 2001. Spatio-temporal dynamics of the Allonemobius fasciatus-A. socius mosaic hybrid zone:A 14-year perspective. Mol. Ecol. 10, 627-638. [11] Bronstein, J.L., Gouyon, P.H., Gliddon, C., 1990. The ecological consequences of flowering asynchrony in monoecious figs:A simulation study. Ecology 71, 2145-2156. [12] Burgess, K.S., Morgan, M., Deverno, L., et al., 2005. Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol. Ecol. 14, 3471-3483. [13] Chen, H.H., Peng, Y.Q., Zhang, Y., et al., 2015. Winter cropping in Ficus tinctoria:An alternative strategy. Sci. Rep. 5, 16496. [14] Chen, H.H., Zhang, Y., Peng, Y.Q., et al., 2018. Latitudinal effects on phenology near the northern limit of figs in China. Sci. Rep. 8, 4320. [15] Chen, Y., Jiang, Z.X., Compton, S.G., et al., 2011. Genetic diversity and differentiation of the extremely dwarf Ficus tikoua in Southwestern China. Biochem. Syst. Ecol. 39, 441-448. [16] Chhatre, V.E., Evans, L.M., DiFazio, S.P., et al., 2018. Adaptive introgression and maintenance of a trispecies hybrid complex in range-edge populations of Populus. Mol. Ecol. 27, 4820-4838. [17] Chunco, A.J., 2014. Hybridization in a warmer world. Ecol. Evol. 4, 2019-2031. [18] Cook, J.M., Rasplus, J.Y., 2003. Mutualists with attitude:Coevolving fig wasps and figs. Trends Ecol. Evol. 18, 241-248. [19] Cook, J.M., Segar, S.T., 2010. Speciation in fig wasps. Ecol. Entomol. 35, 54-66. [20] Corlett, R.T., 1987. The phenology of Ficus fistulosa in Singapore. Biotropica 19, 122-124. [21] Cornille, A., Underhill, J.G., Cruaud, A., et al., 2011. Floral volatiles, pollinator sharing and diversification in the fig-wasp mutualism:Insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc. R. Soc. Lond. Ser. B-Biol. Sci. 279, 1731-1739. [22] Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Associates. [23] Cruaud, A., Roensted, N., Chantarasuwan, B., et al., 2012. An extreme case of plant-insect co-diversification:Figs and fig-pollinating wasps. Syst. Biol. 61, 1029-1047. [24] Cruzan, M.B., Arnold, M.L., 1993. Ecological and genetic associations in an Iris hybrid zone. Evolution 47, 1432-1445. [25] De Cahsan, B., Kiemel, K., Westbury, M.V., et al., 2021. Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad. Ecol. Evol. 11, 9776-9790. [26] de Casas, R.R., Cano, E., Balaguer, L., et al., 2007. Taxonomic identity of Quercus coccifera L. in the Iberian Peninsula is maintained in spite of widespread hybridisation, as revealed by morphological, ISSR and ITS sequence data. Flora 202, 488-499. [27] Dunn, D.W., Yu, D.W., Ridley, J., et al., 2008 Longevity, early emergence and body size in a pollinating fig wasp-implications for stability in a fig-pollinator mutualism. J. Anim. Ecol. 77, 927-935. [28] Earl, D.A., Vonholdt, B.M., 2012. STRUCTURE HARVESTER:A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359-361. [29] Ellstrand, N.C., Whitkus, R., Rieseberg, L.H., 1996. Distribution of spontaneous plant hybrids. Proc. Natl. Acad. Sci. USA 93, 5090-5093. [30] Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study. Mol. Ecol. 14, 2611-2620. [31] Excoffier, L., Lischer, H.E.L., 2010. Arlequin suite ver 3.5:A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564-567. [32] Fitzpatrick, S.W., Gerberich, J.C., Kronenberger, J.A., et al., 2015. Locally adapted traits maintained in the face of high gene flow. Ecol. Lett. 18, 37-47. [33] Frejaville, T., Vizcaino-Palomar, N., Fady, B., et al., 2020. Range margin populations show high climate adaptation lags in European trees. Glob. Change Biol. 26, 484-495. [34] Fungjanthuek, J., Huang, M.J., Hughes, A.C., et al., 2022. Ecological niche overlap and prediction of the potential distribution of two sympatric Ficus (Moraceae) species in the Indo-Burma region. Forests 13, 1420. [35] Garroway, C.J., Bowman, J., Cascaden, T.J., et al., 2010. Climate change induced hybridization in flying squirrels. Glob. Change Biol. 16, 113-121. [36] Gerard, M., Vanderplanck, M., Wood, T., et al., 2020. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 4,77-86. [37] Ghana, S., Suleman, N., Compton, S.G., 2015a. Ability to gall:The ultimate basis of host specificity in fig wasps? Ecol. Entomol. 40, 280-291. [38] Ghana, S., Suleman, N., Compton, S.G., 2015b. A comparison of pollinator fig wasp development in figs of Ficus montana and its hybrids with Ficus asperifolia. Entomol. Exp. Appl. 156, 225-237. [39] Goldschmidt, R., 1933. Some aspects of evolution. Science 78, 539-547. [40] Gonzalez-Megias, A., Gomez, J.M., Sanchez-Pinero, F., 2005. Regional dynamics of a patchily distributed herbivore along an altitudinal gradient. Ecol. Entomol. 30, 706-713. [41] Grant, P.R., Grant, R., 1992. Hybridization of bird species. Science 256, 193-197. [42] Grant, V., 1981. Plant speciation (2nd ed.). New-York:Columbia University Press. [43] Grass, I., Jauker, B., Steffan-Dewenter, I., et al., 2018. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408-1417. [44] Grison-Pige, L., Bessiere, J.M., Hossaert-McKey, M., 2002. Specific attraction of fig-pollinating wasps:Role of volatile compounds released by tropical figs. J. Chem. Ecol. 28, 283-295. [45] Hagen, M., Kissling, W.D., Rasmussen, C., et al., 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89-120. [46] Harrison, R.D., 2000. Repercussions of El Nino:drought causes extinction and the breakdown of mutualism in Borneo. Proc. R. Soc. Lond. B 267, 911-915. [47] Harrison, R.D., 2001. Drought and the consequences of El Nino in Borneo:a case study of figs. Popul. Ecol. 43, 63-76. [48] Harrison, R.D., 2003. Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270(s1), S76-S79. [49] Hellberg, M.E., Prada, C., Tan, M.H., et al., 2016. Getting a grip at the edge:Recolonization and introgression in eastern Pacific Porites corals. J. Biogeogr. 43, 2147-2159. [50] Hegland, S.J., Nielsen, A., Lazaro, A., et al., 2009. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184-195. [51] Herre, E.A., Jander, K.C., Machado, C.A., 2008. Evolutionary ecology of figs and their associates:recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39, 439-458. [52] Hey, J., 2006. Recent advances in assessing gene flow between diverging populations and species. Curr. Opin. Genet. Dev. 16, 592-596. [53] Hossaert-McKey, M., Soler, C., Schatz, B., et al., 2010. Floral scents:Their roles in nursery pollination mutualisms. Chemoecology 20, 75-88. [54] Janzen, D.H., 1979. How to be a fig. Annu. Rev. Ecol. Syst., 10, 13-51. [55] Jousselin, E., Rasplus, J.Y., Kjellberg, F., 2003. Convergence and coevolution in a mutualism:Evidence from a molecular phylogeny of Ficus. Evolution 57, 1255-1269. [56] Kato, M., Takimura, A., Kawakita, A., 2003. An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc. Natl. Acad. Sci. USA 100, 5264-5267. [57] Kawecki, T.J., 2008. Adaptation to marginal habitats. Annu. Rev. Eco. Evol. Syst. 39, 321-342. [58] Khadari, B., Gibernau, M., Anstett, M.C., et al., 1995. When syconia wait for pollinators:the length of fig receptivity. Am. J. Bot. 82, 992-999. [59] Kiers, E.T., Palmer, T.M., Ives, A.R., et al., 2010. Mutualisms in a changing world:An evolutionary perspective. Ecol. Lett. 13, 1459-1474. [60] Kindler, C., Chevre, M., Ursenbacher, S., et al., 2017. Hybridization patterns in two contact zones of grass snakes reveal a new Central European snake species. Sci. Rep. 7, 7378. [61] Kusumi, J., Azuma, H., Tzeng, H.Y., et al., 2012. Phylogenetic analyses suggest a hybrid origin of the figs (Moraceae:Ficus) that are endemic to the Ogasawara (Bonin) Islands, Japan. Mol. Phylogenet. Evol. 63, 168-179. [62] Lepais, O., Petit, R.J., Guichoux, E., et al., 2009. Species relative abundance and direction of introgression in oaks. Mol. Ecol. 18, 2228-2242. [63] Li, S.Q., Huang, J.F., Darwell, C.T., et al., 2020. Development of 19 universal microsatellite loci for three closely related Ficus species (Moraceae) by high-throughput sequencing. Genes Genet. Syst. 95, 21-27. [64] Li, X., Wei, G.M., EI-Kassaby, Y.A., et al., 2021. Hybridization and introgression in sympatric and allopatric populations of four oak species. BMC Plant Biol. 21, 266. [65] Liao, W.J., Zhu, B.R., Li, Y.F., et al., 2019. A comparison of reproductive isolation between two closely related oak species in zones of recent and ancient secondary contact. BMC Evol. Biol. 19, 70. [66] Liu, C., Yang, D.R., Peng, Y.Q., 2011. Body size in a pollinating fig wasp and implications for stability in a fig-pollinator mutualism. Entomol. Exp. Appl. 138, 249-255. [67] Liu, G.X., Yang, D.R., Peng, Y.Q., et al., 2015a. Complementary fruiting phenologies facilitate sharing of one pollinator fig wasp by two fig trees. J. Plant Ecol. 8, 197-206. [68] Liu, M., Compton, S.G., Peng, F.E., et al., 2015b. Movements of genes between populations:Are pollinators more effective at transferring their own or plant genetic markers? Proc. R. Soc. Ser. B-Biol. Sci. 282, 20150290. [69] Machado, C.A., Robbins, N., Gilbert, M.T.P., et al., 2005. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc. Natl. Acad. Sci. USA 102(s1), 6558-6565. [70] Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. [71] McCauley, R.A., Cortes-Palomec, A.C., Oyama, K., 2019. Species diversification in a lineage of Mexican red oak (Quercus section Lobatae subsection Racemiflorae)-the interplay between distance, habitat, and hybridization. Tree Genet. Genomes 15, 27. [72] Mebert, K., 2008. Good species despite massive hybridization:genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Mol. Ecol. 17, 1918-1929. [73] Memmott, J., Craze, P.G., Waser, N.M., et al., 2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 1, 710-717. [74] Mitchell, N., Campbell, L.G., Ahern, J.R., et al., 2019. Correlates of hybridization in plants. Evol. Lett. 3, 570-585. [75] Moe, A.M., Rossi, D.R., Weiblen, G.D., 2011. Pollinator sharing in dioecious figs (Ficus:Moraceae). Biol. J. Linn. Soc. 103, 546-558. [76] Muhlfeld, C., Kovach, R.P., Jones, L.A., et al., 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4, 620-624. [77] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2017. Vegan:Community Ecology Package. R Package Version 2.4-5. [78] Parrish, T.L., Koelewijn, H.P., van Dijk, P.J., et al., 2003. Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. Biotropica 35, 333-343. [79] Patel, A., 1996. Variation in a mutualism:Phenology and the maintenance of gynodioecy in two Indian fig species. J. Ecol. 84, 667-680. [80] Patel, A., Hossaert-McKey, M., 2000. Components of reproductive success in two dioecious fig species, Ficus exasperata and Ficus hispida. Ecology 81, 2850-2866. [81] Peakall, R., Smouse, P.E., 2012. GenAIEx 6.5:Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537-2539. [82] Pellmyr, O., 2003. Yuccas, yucca moths, and coevolution:A review. Ann. Mo. Bot. Gard. 90, 35-55. [83] Peng, Y.Q., Compton, S.G.,Yang, D.R., 2010. The reproductive success of Ficus altissima and its pollinator in a strongly seasonal environment:Xishuangbanna, Southwestern China. Plant Ecol. 209, 227-236. [84] Porto-Hannes, I., Burlakova, L.E., Zanatta, D.T., et al., 2021. Boundaries and hybridization in a secondary contact zone between freshwater mussel species (Family:Unionidae). Heredity 126, 955-973. [85] Pothasin, P., Compton, S.G., Wangpakapattanawong, P., 2014. Riparian Ficus tree communities:The distribution and abundance of riparian fig trees in Northern Thailand. PLoS ONE 9, e108945. [86] Pothasin, P., Compton, S.G., Wangpakapattanawong, P., 2016. Seasonality of leaf and fig production in Ficus squamosa, a fig tree with seeds dispersed by water. PLoS ONE 11, e0152380. [87] Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. [88] Rafferty, N.E., CaraDonna, P.J., Bronstein, J.L., 2015. Phenological shifts and the fate of mutualisms. Oikos 124, 14-21. [89] Ramirez, B.W., 1986. Artificial hybridization and self-fertilization in Ficus (Moraceae). Brenesia 25, 265-272. [90] Ramirez, B.W., 1994. Hybridization of Ficus religiosa with F. septica and F. aurea (Moraceae). Rev. Biol. Trop. 4, 339-342. [91] Ramirez, B.W., Montero, S.J., 1988. Ficus microcarpa L., F. benjamina L. and other species introduced in the New World, their pollinators (Agaonidae) and other fig wasps. Rev. Biol. Trop. 36, 441-446. [92] Renoult, J.P., Kjellberg, F., Grout, C., et al., 2009. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evol. Biol. 9, 248. [93] Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914. [94] Schweiger, O., Biesmeijer, J.C., Bommarco, R., et al., 2010. Multiple stressors on biotic interactions:How climate change and alien species interact to affect pollination. Biol. Rev. 85, 777-795. [95] Schweiger, O., Settele, J., Kudrna, O., et al., 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472-3479. [96] Seehausen, O., 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198-207. [97] Souto-Vilaros, D., Proffit, M., Buatois, B., et al., 2018. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256-2273. [98] Spencer, H., Weiblen, G., Flick B., 1996. Phenology of Ficus variegata in a seasonal wet tropical forest at Cape Tribulation, Australia. J. Biogeogr. 23, 467-475. [99] Starr, T.N., Gadek, K.E., Yoder, J.B., et al., 2013. Asymmetric hybridization and gene flow between Joshua trees (Agavaceae:Yucca) reflect differences in pollinator host specificity. Mol. Ecol. 22, 437-449. [100] Strelkov, P., Nikula, R., Vainola, R., 2007. Macoma balthica in the White and Barents Seas:Properties 769 of a widespread marine hybrid swarm (Mollusca:Bivalvia). Mol. Ecol. 16, 4110-4127. [101] Su, Z.H., Sasaki, A., Kusumi, J., et al., 2022. Pollinator sharing, copollination, and speciation by host shifting among six closely related dioecious fig species. Commun. Biol. 5, 284. [102] Svensson, G.P., Okamoto, T., Kawakita, A., et al., 2010. Chemical ecology of obligate pollination mutualisms:Testing the 'private channel' hypothesis in the Breynia-Epicephala association. New Phytol. 186, 995-1004. [103] Tsai, L., Hayakawa, H., Fukuda, T., et al., 2015. A breakdown of obligate mutualism on a small island:An interspecific hybridization between closely related fig species (Ficus pumila and Ficus thunbergii) in Western Japan. Am. J. Plant Sci. 6, 126-131. [104] Vaha, J.P., Primmer, C.R., 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63-72. [105] van Noort, S., Compton, S.G., 1996. Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. J. Biogeogr. 23, 415-424. [106] Verkerke, W., 1989. Structure and function of the fig. Experientia 45, 612-622. [107] Wachowiak, W., Zukowska, W.B., Wojkiewicz, B., et al., 2016. Hybridization in contact zone between temperate European pine species. Tree Genet. Genomes 12, 48. [108] Walls, S.C., 2009. The role of climate in the dynamics of a hybrid zone in Appalachian salamanders. Glob. Change Biol. 15, 1903-1910. [109] Wang, G., Cannon, C.H., Chen, J., 2016. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. Ser. B-Biol. Sci. 283, 20152963. [110] Wang, G., Zhang, X.T., Herre, E.A., et al., 2021. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat. Commun. 12, 1-14. [111] Wang, R., Ai, B., Gao, B.Q., et al., 2009. Spatial genetic structure and restricted gene flow in a functionally dioecious fig, Ficus pumila L. var. pumila (Moraceae). Popul. Ecol. 51, 307-315. [112] Ware, A.B., Compton, S.G., 1992. Breakdown of pollinator specificity in an African fig tree. Biotropica 24, 544-549. [113] Ware, A.B., Compton, S.G., 1994a. Responses of fig wasps to host plant volatile cues. J. Chem. Ecol. 20, 785-802. [114] Ware, A.B., Compton, S.G., 1994b. Dispersal of adult female fig wasps. 1. Arrivals and departures. Entomol. Exp. Appl. 73, 221- 229. [115] Ware, A.B. Compton, S.G., 1994c. Dispersal of adult female fig wasps. 2. Movements between trees. Entomol. Exp. Appl. 73, 231- 238. [116] Ware, A.B., Kaye, P.T., Compton, S.G., et al., 1993. Fig volatiles:Their role in attracting pollinators and maintaining pollinator specificity. Plant Syst. Evol. 186, 147-156. [117] Warren, M., Robertson, M., Greeff, J., 2010. A comparative approach to understanding factors limiting abundance patterns and distributions in a fig tree-fig wasp mutualism. Ecography 33, 148-158. [118] Wei, Z.D., Kobmoo, N., Cruaud, A., et al., 2014. Genetic structure and hybridization in the species group of Ficus auriculata:Can closely related sympatric Ficus species retain their genetic identity while sharing pollinators? Mol. Ecol. 23, 3538-3550. [119] Whitney, K.D., Ahern, J.R., Campbell, L.G., et al., 2010. Patterns of hybridization in plants. Perspect. Plant Ecol. Evol. Syst. 12, 175-182. [120] Yoder, J.B., Smith, C.I., Rowley, D.J., et al., 2013. Effects of gene flow on phenotype matching between two varieties of Joshua tree (Yucca brevifolia; Agavaceae) and their pollinators. J. Evol. Biol. 26, 1220-1233. [121] Yu, H., Nason, J.D., 2013. Nuclear and chloroplast DNA phylogeography of Ficus hirta:Obligate pollination mutualism and constraints on range expansion in response to climate change. New Phytol. 197, 276-289. [122] Yu, H., Zhang, Z.W., Liu, L., et al., 2022. Asymmetric sharing of pollinator fig wasps between two sympatric dioecious fig trees:A reflection of supply and demand or differences in the size of their figs? Bot. Stud. 63, 7. [123] Zhang, Y., Peng, Y.Q., Compton, S.G., et al., 2014. Premature attraction of pollinators to inaccessible figs of Ficus altissima:a search for ecological and evolutionary consequences. PLoS ONE 9, e86735. [124] Zhou, Z.K., Gilbert, M.G., 2003. Flora of China. Volume 5:Moraceae. |
[1] | Yumeng Ren, Lushui Zhang, Xuchen Yang, Hao Lin, Yupeng Sang, Landi Feng, Jianquan Liu, Minghui Kang. Cryptic divergences and repeated hybridizations within the endangered “living fossil” dove tree (Davidia involucrata) revealed by whole genome resequencing [J]. Plant Diversity, 2024, 46(02): 169-180. |
[2] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
[3] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[4] | Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang. Allopolyploid origin and niche expansion of Rhodiola integrifolia (Crassulaceae) [J]. Plant Diversity, 2023, 45(01): 36-44. |
[5] | Meng-Jiao Fu, Hai-Yang Wu, Dong-Rui Jia, Bin Tian. Evolutionary history of a desert perennial Arnebia szechenyi (Boraginaceae): Intraspecific divergence, regional expansion and asymmetric gene flow [J]. Plant Diversity, 2021, 43(06): 462-471. |
[6] | Mianmian Wang, Jun Yang, Jinpeng Wan, Dayun Tao, Jiawu Zhou, Diqiu Yu, Peng Xu. A hybrid sterile locus leads to the linkage drag of interspecific hybrid progenies [J]. Plant Diversity, 2020, 42(05): 370-375. |
[7] | Huai Ning, Jiaojun Yu, Xun Gong. Bidirectional natural hybridization between sympatric Ligularia vellerea and L. subspicata [J]. Plant Diversity, 2017, 39(04): 214-220. |
[8] | WU Jie, WANG Dong-Chao, YANG Yong-Ping, CHEN Jia-Hui. Homoploid Hybridization between Native Salix cavaleriei and Exotic Salix matsudana (Salicaceae) [J]. Plant Diversity, 2015, 37(01): 1-10. |
[9] | DING Yong-, CHANG Wei-, ZHANG Shi-Bao-, HU Hong. Construction of Leave Library by SSH and Preliminary Analysis of Genes Responsible for Heat Sress in Incarvillea zhongdiannensis [J]. Plant Diversity, 2012, 34(01): 47-55. |
[10] | LI Wan-Sha, LIU De-Tuan, YANG Yong-Ping, HU Xiang-Yang. Isolation and Analysis of Differential Expressed ESTs from Stem Trichomes of Lycopersicon esculentum (Solanaceae) [J]. Plant Diversity, 2011, 33(6): 660-666. |
[11] |
DONG Feng-Ping , HAN Su-Ying , ZHANG Shou-Gong , QI Li-Wang , LIU Bo , LI Xiu-Lan , CHEN Cheng-Bin. Physical Mapping of 25S rDNA on Metaphase Chromosomes of Populus (Salicaceae) in Five Sections by Fluorescence in Situ Hybridization [J]. Plant Diversity, 2007, 29(04): 423-428. |
[12] | YAO JinYan,ZHAO NanXian,FANG WeiKuan,CHEN YiZhu. Conflicts and Resource Allocation in the Coevolved Mutualism of Figs and Fig Wasps [J]. Plant Diversity, 2004, 26(01): 1-3. |
[13] | SUO ZhiLi, ZHANG HuiJin, ZHANG ZhiMing,CHEN FuFei,CHEN FuHui. DNA Molecular Evidences of the Hybrids between Paeonia rockii and Psuffruticosa Based on ISSR Markers [J]. Plant Diversity, 2003, 25(14): 1-3. |
[14] | ZHANG Chang-Qin,FENG Bao-Jun,LU Yuan-Lin. Hybridization Study of the Genus Rhododendron [J]. Plant Diversity, 1998, 20(01): 1-3. |
[15] | Sun Rongjin, Zhang Yulan, Yang Xiaodong. IDENTIFICATION OF CHROMOSOMAL TRANSLOCATION 4B-1D IN CV. FENGKANG NO. 13 OF COMMON WHEAT [J]. Plant Diversity, 1989, 11(03): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||