[1] Alahuhta, J., Kosten, S., Akasaka, M., et al., 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758-1769. [2] Araujo, M. B., Nogues-Bravo, D., Diniz-Filho, J.A.F., et al., 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8-15. [3] Barton, K., 2020. MuMIn: multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn. [4] Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134-143. [5] Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 134-143. [6] Baselga, A., Orme, D., Villeger, S., et al., 2021. Betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.4. https://CRAN.R-project.org/package=betapart. [7] Chai, Y., Yue, M., 2016. Research advances in plant community assembly mechanisms. Acta Ecol. Sin. 36, 4557-4572. [8] Chase, J.M., Leibold, M.A. (Eds), 2003. Ecological niches: linking classical and contemporary approaches. University of Chicago Press. [9] Chen, S., Ouyang, Z., Xu, W., et al., 2010. A review of beta diversity studies. Biodivers. Sci. 18, 323-335. [10] Fang, J., Wang, X., Shen, Z., et al., 2009. Methods and protocols for plant community inventory. Biodivers. Sci. 17, 533-548. [11] Fang, W., Cai, Q., Zhu, J., et al., 2019. Distribution, community structures and species diversity of larch forests in North China. Chin. J. Plant Ecol. 43, 742-752. [12] Fang, W., Zhao, Q., Cai, Q., et al., 2020. The relationships among structure variables of larch forests in China. For. Ecosyst. 7, 61. https://doi.org/10.1186/s40663-020-00273-w. [13] Fang, W., Cai, Q., Zhao, Q., et al., 2022. Species richness patterns and the determinants of larch forests in China. Plant Divers. 44, 436-444. https://doi.org/10.1016/j.pld.2022.05.002. [14] Gaston, K.J., Blackburn, T.M. (Eds), 2000. Pattern and process in macroecology. Blackwell Science, Oxford. [15] Godsoe, W., Bellingham, P. J., Moltchanova, E., 2022. Disentangling Niche Theory and Beta Diversity Change. Am. Nat. 199, 510-522. [16] Goslee, S.C., Urban, D.L., 2007. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1-19. [17] Guo, K., Fang J., Wang G, et al., 2020. A revised scheme of vegetation classification system of China. Chin. J. Plant Ecol. 44, 111-127. [18] Harrell, Jr. F.E., Dupont, C., 2020. Hmisc: harrell miscellaneous. R package version 4.4-0. https://CRAN.R-project.org/package=Hmisc. [19] He, Y., Liang, S., Liu, R., et al., 2022. Beta diversity patterns unlock the community assembly of woody plant communities in the riparian zone. Forests 13, 673. [20] Hijmans, R.J., 2019. Geosphere: spherical trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere. [21] Hijmans, R.J., 2020. Raster: geographic data analysis and modeling. R package version 3.1-5. https://CRAN.R-project.org/package=raster. [22] Hubbell, S.P. (Eds), 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. [23] Jaeger, R., Delagrange, S., Aubin, I., et al., 2022. Increasing the intensity of regeneration treatments decreased beta diversity of temperate hardwood forest understory 20 years after disturbance. Ann. For. Sci. 79, 39. [24] Keddy, P.A., 1992. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157-164. [25] Legendre, P., Borcard, D., Peres-Neto, P., 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435-450. [26] Lennon, J.J., Koleff, P., Greenwood, J., et al., 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966-979. [27] Li, X., Liu, Y., Liu, Y., et al., 2016. Impacts of geographical distances and environmental differences on the beta diversity of plant communities in the dry-hot valley of the Yuanjiang River. Biodivers. Sci. 24, 399-406. [28] Li, M., Wu, K., Meng, F., et al., 2020. Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables. Biodivers. Sci. 28, 1570-1580. [29] Liu, Z., Fang, J., Piao, S., 2002. Geographical distribution of species genera Abies, Picea and Larix in China. Acta Geo. Sin. 57, 577-586. [30] Liu, Y., Tang, Z., Fang, J., 2015. Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broad-leaved forests in China. Appl. Veg. Sci. 18, 34-42. [31] Lu, M., 2021. Complex relationships between beta diversity and dispersal in meta-community models. Ecography 44, 1769-1780. [32] McFadden, I.R., Sandel, B., Tsirogiannis, C., et al., 2019. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic beta diversity. Ecol. Lett. 22, 1126-1135. [33] Morlon, H., Chuyong, G., Condit, R., et al., 2008. A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett. 11, 904-917. [34] Nekola, J. C., White, P. S., 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867-878. [35] Niu, K., Liu, Y., Shen, Z., et al., 2009. Community assembly: the relative importance of neutral theory and niche theory. Biodivers. Sci. 17, 579-593. [36] Oksanen, J., Blanchet, F.G., Friendly, M., 2019. Vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. [37] Qian, H., 2009. Beta diversity in relation to dispersal ability for vascular plants in North America. Glob. Ecol. Biogeogr. 18, 327-332. [38] Qian, H., Ricklefs, R.E., White, P.S., 2005. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15-22. [39] Qian, H., Jin, Y., Leprieur, F., et al., 2020. Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography 43, 1706-1716. [40] Rao, M., Mi, X., Zhang, J., et al., 2013. Effects of environmental filtering and dispersal limitation on species and phylogenetic beta diversity in Gutianshan National Nature Reserve. Chinese Sci. Bull. 58, 1204-1212. [41] Si, X., Zhao, Y., Chen, C., et al., 2017. Beta-diversity partitioning: Methods, applications and perspectives. Biodivers. Sci. 25, 464-480. [42] Socolar, J.B., Gilroy, J.J., Kunin, W.E., et al., 2016. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67-80. [43] Soininen, J., Heino, J., Wang, J., 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96-109. [44] Sundaram, M., Leslie, A. B., 2021. The influence of climate and palaeoclimate on distributions of global conifer clades depends on geographical range size. J. Biogeogr. 48, 2286-2297. [45] Sundaram, M., Donoghue, M.J., Farjon, A., et al., 2019. Accumulation over evolutionary time as a major cause of biodiversity hotspots in conifers. Proc. Roy. Soci. B-Biol. Sci. 286, 20191887. [46] Talbot, J.M., Bruns, T.D., Taylor, J.W., et al., 2014. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. U.S.A. 111, 6341-6346. [47] Tang, Z., Fang, J., Chi, X., et al., 2012a. Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China. Ecography 35, 1083-1091. [48] Tang, Z., Fang, J., Chi, X., et al., 2012b. Geography, environment, and spatial turnover of species in China’s grasslands. Ecography 35, 1103-1109. [49] Ulrich, W., Gotelli, N.J., 2007. Null model analysis of species nestedness patterns. Ecology 88, 1824-1831. [50] Viana, D.S., Figuerola, J., Schwenk, K., et al., 2016. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39, 281-288. [51] Wang, X., Fang, J., Sanders, N.J., et al., 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32,133-142. [52] Wang, Y., Bao, Y., Yu, M., et al., 2010. Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake. Divers. Distrib. 16, 862-873. [53] Wang, X., Lu, X., Yao, J., et al., 2017. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. 11, 1345-1358. [54] Wang, X., Wiegand, T., J. Anderson-Teixeira, K. et al., 2018. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Glob. Ecol. Biogeogr. 27, 581-592. [55] Wang, G. H., Fang, J. Y., Guo, K., et al., 2020. Contents and protocols for the classification and description of Vegetation Formations, Alliances and Associations of vegetation of China. Chin. J. Plant Ecol. 44, 128. [56] Wang, X., Zhong, M., Yang, S., et al., 2022. Multiple β-diversity patterns and the underlying mechanisms across amphibian communities along a subtropical elevational gradient. Divers. Distrib 28, 2489–2502. [57] Warton, D., Duursma, R., Falster, D., et al., 2012. Smatr 3 - an R package for estimation and inference about allometric lines. Methods Ecol. Evo. 3, 257-259. [58] Watanabe, S., Hajima, T., Sudo, K., et al., 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845-872. [59] Yao, Z., Wen, H., Deng, Y., et al., 2020. Driving forces underlying the beta diversity of tree species in subtropical mid-mountain moist evergreen broad-leaved forests in Ailao Mountains. Biodivers. Sci. 28, 445-454. [60] Zeng, C., Li, W., Ding, P., et al., 2022. A landscape-level analysis of bird taxonomic, functional and phylogenetic β-diversity in habitat island systems. J. Biogeogr. 49, 1162-1175. [61] Zhong, Y., Chu, C., Myers, J.A., et al., 2021. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137. |