Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 149-157.DOI: 10.1016/j.pld.2023.11.004
• Articles • Next Articles
Hong Qiana, Brent D. Mishlerb, Jian Zhangc,d, Shenhua Qiane
Received:
2023-09-02
Revised:
2023-11-24
Online:
2024-03-25
Published:
2024-04-07
Contact:
Hong Qian,E-mail:hqian@museum.state.il.us,hong.qian@illinoisstatemuseum.org
Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian. Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera[J]. Plant Diversity, 2024, 46(02): 149-157.
Add to citation manager EndNote|Ris|BibTeX
[1] Anderson, S., 1994. Area and endemism. Q. Rev. Biol. 69, 451-471. [2] Brown, J.H., Lomolino, M.V., 1998. Biogeography, second ed. Sinauer Associates, Inc., Sunderland. [3] Brown, M.J.M., Walker, B.E., Black, N., et al., 2023. rWCVP:a companion R package for the world checklist of vascular plants. New Phytol. 240, 1355-1365. [4] Brummitt, R.K., 2001. World Geographical Scheme for Recording Plant Distributions, 2 edn. Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh. [5] Cai, L., Kreft, H., Taylor, A., et al., 2023. Climatic stability and geological history shape global centers of neo- and paleoendemism in seed plants. Proc. Natl. Acad. Sci. U.S.A. 120, e2300981120. [6] Charkevicz, S.S., 1985-1996. Plantae Vasculares Orientis Extremi Sovietici, vols. vols. 1-8. Nauka, Leningrad. [7] Coyle, J.R., Halliday, F.W., Lopez, B.E., et al., 2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814-826. [8] Crisp, M., Laffan, S., Linder, H., et al. 2001. Endemism in the Australian flora. J. Biogeogr. 28, 183-198. [9] Dynesius, M., Jansson, R., 2000. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U.S.A. 97, 9115-9120. [10] Enquist, B.J., Feng, X., Boyle, B., et al., 2019. The commonness of rarity:global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414. [11] Feng, G., Svenning, J.-C., Mi, X., et al., 2014. Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. For. Ecol. Manage. 313, 188-198. [12] Fu, Q., Huang, X., Li, L., et al., 2022. Linking evolutionary dynamics to species extinction for flowering plants in global biodiversity hotspots. Divers. Distrib. 28, 2871-2885. [13] Good, R., 1974. The Geography of the Flowering Plants, third ed. White Plains, New York, Longman. [14] Govaerts, R., Nic Lughadha, E., Black, N., et al., 2021. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215. [15] Guo, Q., Qian, H., Zhang, J., 2022. On the relationship between species diversity and range size. J. Biogeogr. 49, 1911-1919. [16] Jansson, R., 2003. Global patterns in endemism explained by past climatic change. Proc. Roy. Soci. B-Biol. Sci. 270, 583-590. [17] Jetz, W., Rahbek, C., Colwell, R.K., 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecol. Lett. 7, 1180-1191. [18] Jin, Y., Qian, H., 2022. V.PhyloMaker2:an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [19] Jin, Y., Qian, H., 2023. U.PhyloMaker:an R package that can generate large phylogenetic trees for plants and animals. Plant Divers. 45, 347-352. [20] Karger, D.N., Conrad, O., Bohner, J., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 170122. [21] Kier, G., Kreft, H., Lee, T.M., et al., 2009. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. U.S.A. 106, 9322-9327. [22] Kissling, W.D., Carl, G., 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol. Biogeogr. 17, 59-71. [23] Kissling, W.D., Eiserhardt, W.L., Baker, W.J., et al., 2012. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl. Acad. Sci. U.S.A. 109, 7379-7384. [24] Kooyman, R., Rossetto, M., Allen, C., 2012. Australian tropical and subtropical rain forest community assembly:phylogeny, functional biogeography, and environmental gradients. Biotropica 44, 668-679. [25] Krasnoborov, I.M., Peschkova, G.A., Malyschev, L.I., 1988-1997. Flora Sibiriae, vols. vols. 1-14. Nauka, Novosibirsk, Russia. [26] Laffan, S.W., Crisp, M.D. 2003. Assessing endemism at multiple spatial scales, with an example from the Australian vascular flora. J. Biogeogr. 30, 511-520. [27] Laffan S.W., Lubarsky, E., Rosauer, D.F., 2010. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33, 643-647. [28] Legendre, P., Legendre, L., 2012. Numerical Ecology, third ed. Elsevier, Amsterdam. [29] Letcher, S.G., 2010. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. Royal Soc. B-Biol. Sci. 277, 97-104. [30] Li, H.-T., Yi, T.-S., Gao, L.-M., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. [31] Linder, H.P., 1995. Setting conservation priorities-the importance of endemism and phylogeny in the southern African orchid genus Herschelia. Conserv. Biol. 9, 585-595. [32] Linder, H.P., 2001. Plant diversity and endemism in sub-Saharan tropical Africa. J. Biogeogr. 28, 169-182. [33] Liu, Y., Xu, X., Dimitrov, D., 2023. An updated floristic map of the world. Nat. Commun. 14, 2990. [34] McCune, B., Mefford, M.J., 1999. PC-ORD-Multivariate Analysis of Ecological Data (Version 4.0). MjM Software Design, Gleneden Beach. [35] McFadden, I.R., Sandel, B., Tsirogiannis, C., 2019. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic ss diversity. Ecol. Lett. 22, 1126-1135. [36] Mishler, B.D., Knerr, N., Gonzalez-Orozco, C.E., 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia. Nat. Commun. 5, 4473. [37] Moulatlet, G.M., Kusumoto, B., Pinto-Ledezma, J., 2023. Global patterns of phylogenetic beta-diversity components in angiosperms. J. Veg. Sci. 34, e13203. [38] Myers, N., Mittermeier, R.A., Mittermeier, C.G., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [39] Nitta, J.H., Mishler, B.D., Iwasaki, W., 2022. Spatial phylogenetics of Japanese ferns:patterns, processes, and implications for conservation. Am. J. Bot. 109:727-745. [40] Nitta, J.H., Laffan, S.W., Mishler, B.D., 2023. canaper:categorical analysis of neo- and paleo-endemism in R. Ecography 2023, e06638. [41] Omer, A., Fristoe, T., Yang, Q., 2022. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906-914. [42] Orme, C.D.L., Davies, R.G., Olson, V.A., 2006. Global patterns of geographic range size in birds. PLoS Biol. 4, 1276-1283. [43] Qian, H., 1999. Floristic analysis of vascular plant genera of North America north of Mexico:characteristics of phytogeography. J. Biogeogr. 26, 1307-1321. [44] Qian, H., 2001. A comparison of generic endemism of vascular plants between East Asia and North America. Int. J. Plant Sci. 162, 191-199. [45] Qian, H., Qian, S.H., 2023. Geographic patterns of taxonomic and phylogenetic β-diversity of angiosperm genera in regional floras across the world. Plant Divers. 45, 491-500. [46] Qian, H., Deng, T., Jin, Y., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [47] Qian, H., Zhang, J., Jiang, M.-C., 2022a. Global patterns of fern species diversity:an evaluation of fern data in GBIF. Plant Divers. 44, 135-140. [48] Qian, H., Zhang, J., Zhao, J., 2022b. How many known vascular plant species are there in the world? An integration of multiple global plant databases. Biodivers. Sci. 30, 22254. [49] Qian, H., Zhang, J., Jiang, M.-C., 2023. Global patterns of taxonomic and phylogenetic diversity of flowering plants:biodiversity hotspots and coldspots. Plant Divers. 45, 265-271. [50] Quintero, I., Jetz, W., 2018. Global elevational diversity and diversification of birds. Nature 555, 246-250. [51] R Core Team, 2022. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [52] Rangel, T.F.L.V.B., Diniz-Filho, J.A.F., Bini, L.M., 2010. SAM:a comprehensive application for spatial analysis in macroecology. Ecography 33, 46-50. [53] Richardson, D.M., Whittaker, R.J., 2010. Conservation biogeography-foundations, concepts and challenges. Divers. Distrib. 16, 313-320. [54] Ricklefs, R.E., 2010. The Economy of Nature:A Textbook in Basic Ecology, sixth ed. W. H. Freeman, New York. [55] Rosauer, D.F., Jetz, W., 2015. Phylogenetic endemism in terrestrial mammals. Global Ecol. Biogeogr. 24, 168-179. [56] Rosauer, D., Laffan, S.W., Crisp, M.D., 2009. Phylogenetic endemism:a new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 18, 4061-4072. [57] Rosenzweig, M.L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge. [58] Sandel, B., Arge, L., Dalsgaard, B., 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660-664. [59] Sandel, B., Weigelt, P., Kreft, H., 2020. Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Global Ecol. Biogeogr. 29, 4-15. [60] Scherrer, D., Korner, C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406-416. [61] Schouw, J.F., 1822. Grundtraek til en almindelig Plantegeographie. Gyldendalske Boghandels Forlag, Copenhagen. [62] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [63] Stevens, G.C., 1989. The latitudinal gradient in geographical range:how so many species coexist in the tropics. Am. Nat. 133, 240-256. [64] Stott, P., 1981. Historical Plant Geography:an Introduction. George Allen and Unwin, London. [65] Strona, G., Nappo, D., Boccacci, F., 2014. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114. [66] Takhtajan, A.L., 1986. Floristic Regions of the World. University of California Press, Berkeley. [67] Thornhill, A.H., Baldwin, B.G., Freyman, W.A., 2017. Spatial phylogenetics of the native California flora. BMC Biol. 15, 96. [68] Weigelt, P., Kissling, W.D., Kisel, Y., 2015. Global patterns and drivers of phylogenetic structure in island floras. Sci. Rep. 5, 12213. [69] Wilkinson, L., Hill, M., Welna, J.P., 1992. SYSTAT for Windows:Statistics. SYSTAT Inc., Evanston. [70] Wu, C.-Y., Wang, H.S., 1983. Physical Geography of China:Phytogeography (I). Science Press, Beijing. [71] Zhang, J., Qian, H., 2023. U.Taxonstand:an R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1-5. [72] Zhang, J., Qian, H., Girardello, M., 2018. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. Lond. Ser. B Biol. Sci. 285, 20180949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||