[1] Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106. [2] Calderwood, A., Kopriva, S., Morris, R.J., 2016. Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell 28, 610-615. [3] Chen, X., Yao, Q., Gao, X., et al., 2016. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26, 640-646. [4] Cox, J., Hein, M.Y., Luber, C.A., et al., 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513-2526. [5] Cox, J., Mann, M., 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. [6] Cox, J., Neuhauser, N., Michalski, A., et al., 2011. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794-1805. [7] Emms, D.M., Kelly, S., 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. [8] Gilroy, S., Bialasek, M., Suzuki, N., et al., 2016. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606-1615. [9] Ham, B.K., Chen, J., Yan, Y., et al., 2018. Insights into plant phosphate sensing and signaling. Curr. Opin. Biotechnol. 49, 1-9. [10] Heeney, M., Frank, M.H., 2023. The mRNA mobileome: challenges and opportunities for deciphering signals from the noise. Plant Cell 35, 1817-1833. [11] Hettenhausen, C., Li, J., Zhuang, H., et al., 2017. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proc. Natl. Acad. Sci. U.S.A. 114, E6703-E6709. [12] Hu, B., Jiang, Z., Wang, W., et al., 2019. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401-413. [13] Huang, T.K., Han, C.L., Lin, S.I., et al., 2013. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25, 4044-4060. [14] Jhu, M.Y., Ichihashi, Y., Farhi, M., et al., 2021. LATERAL ORGAN BOUNDARIES DOMAIN 25 functions as a key regulator of haustorium development in dodders. Plant Physiol. 186, 2093-2110. [15] Kim, G., LeBlanc, M.L., Wafula, E.K., et al., 2014. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345, 808-811. [16] Landi, S., Esposito, S., 2017. Nitrate uptake affects cell wall synthesis and modeling. Front. Plant Sci. 8, 1376. [17] Lei, Y., Xu, Y., Zhang, J., et al., 2021. Herbivory-induced systemic signals are likely to be evolutionarily conserved in euphyllophytes. J. Exp. Bot. 72, 7274-7284. [18] Li, S., Zhang, J., Liu, H., et al., 2020. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. J. Exp. Bot. 71, 1171-1184. [19] Li, Y., Yang, X., Liu, H., et al., 2022. Local and systemic responses conferring acclimation of Brassica napus roots to low phosphorus conditions. J. Exp. Bot. 73, 4753-4777. [20] Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930. [21] Liu, N., Shen, G., Xu, Y., et al., 2020. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol. Plant 13, 573-585. [22] Medici, A., Marshall-Colon, A., Ronzier, E., et al., 2015. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6, 6274. [23] Medici, A., Szponarski, W., Dangeville, P., et al., 2019. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31, 1171-1184. [24] Nickrent, D.L., 2020. Parasitic angiosperms: how often and how many? Taxon 69, 5-27. [25] Rappsilber, J., Ishihama, Y., Mann, M., 2003. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663-670. [26] Ruffel, S., Krouk, G., Ristova, D., et al., 2011. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc. Natl. Acad. Sci. U.S.A. 108, 18524-18529. [27] Ruffel, S., Poitout, A., Krouk, G., et al., 2016. Long-distance nitrate signaling displays cytokinin dependent and independent branches. J. Integr. Plant Biol. 58, 226-229. [28] Shahid, S., Kim, G., Johnson, N.R., et al., 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82-85. [29] Shen, G., Liu, N., Zhang, J., et al., 2020. Cuscuta australis (dodder) parasite eavesdrops on the host plants' FT signals to flower. Proc. Natl. Acad. Sci. U.S.A. 117, 23125-23130. [30] Shen, G., Zhang, J., Lei, Y., et al., 2023. Between-plant signaling. Annu. Rev. Plant Biol. 74, 367-386. [31] Smith, J.D., Woldemariam, M.G., Mescher, M.C., et al., 2016. Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiol. 172, 181-197. [32] Song, J., Bian, J., Xue, N., et al., 2022. Inter-species mRNA transfer among green peach aphids, dodder parasites, and cucumber host plants. Plant Divers. 44, 1-10. [33] Sun, G., Xu, Y., Liu, H., et al., 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. 9, 2683. [34] Thieme, C.J., Rojas-Triana, M., Stecyk, E., et al., 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025. [35] Trapnell, C., Roberts, A., Goff, L., et al., 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578. [36] Turck, F., Fornara, F., Coupland, G., 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573-594. [37] Turnbull, C.G.N., Lopez-Cobollo, R.M., 2013. Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol. 198, 33-51. [38] UniProt, C., 2023. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523-D531. [39] Vega, A., O'Brien, J.A., Gutierrez, R.A., 2019. Nitrate and hormonal signaling crosstalk for plant growth and development. Curr. Opin. Plant Biol. 52, 155-163. [40] Zhang, J., Xu, Y., Xie, J., et al., 2021. Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. Plant Physiol. 185, 1395-1410. [41] Zhang, Z., Zheng, Y., Ham, B.K., et al., 2016. Vascular-mediated signalling involved in early phosphate stress response in plants. Nat. Plants 2, 16033. [42] Zhuang, H., Li, J., Song, J., et al., 2018. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol. 218, 1586-1596. |