Plant Diversity ›› 2024, Vol. 46 ›› Issue (04): 530-536.DOI: 10.1016/j.pld.2024.04.012
• Short communications • Previous Articles
Wen-Hao Zenga,b, Shi-Dan Zhua,b, Ying-Hua Luoa,b, Wei Shic, Yong-Qiang Wanga,b, Kun-Fang Caoa,b
Received:
2023-12-14
Revised:
2024-04-26
Published:
2024-07-29
Contact:
Kun-Fang Cao,E-mail:kunfangcao@gxu.edu.cn
Supported by:
Wen-Hao Zeng, Shi-Dan Zhu, Ying-Hua Luo, Wei Shi, Yong-Qiang Wang, Kun-Fang Cao. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation[J]. Plant Diversity, 2024, 46(04): 530-536.
Add to citation manager EndNote|Ris|BibTeX
Aguirre-Gutierrez, J., Oliveras, I., Rifai, S., et al., 2019. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855-865. Ali, A., Yan, E.R., 2017. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. For. Ecol. Manage. 401, 125-134. Ali, A., Yan, E.R., Chen, H.Y.H., et al., 2016. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13, 4627-4635. Ali, A., Lin, S.L., He, J.K., et al., 2019a. Climatic water availability is the main limiting factor of biotic attributes across large-scale elevational gradients in tropical forests. Sci. Total Environ. 647, 1211-1221. Ali, A., Lin, S.L., He, J.K., et al., 2019b. Big-sized trees overrule remaining trees' attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Ecol. Biogeogr. 25, 2810-2824. Ali, A., Lin, S.L., He, J.K., et al., 2019c. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For. Ecol. Manage. 432, 823-831. Aponte, C., Kasel, S., Nitschke, C.R., et al., 2020. Structural diversity underpins carbon storage in Australian temperate forests. Global. Ecol. Biogeogr. 29, 789-802. Alves, L., Vieira, S.A., Scaranello, M.A., et al., 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manage. 260, 679-691. Bauman, D., Fortunel, C., Delhaye, G., et al. 2022. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528-533. Becknell, J.M., Kissing Kucek, L., Powers, J.S., 2012. Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. For. Ecol. Manage. 276, 88-95. Brassard, B.W., Chen, H.Y.H., Wang, J.R., et al., 2008. Effects of time since stand-replacing fire and overstory composition on live-tree structural diversity in the boreal forest of central Canada. Can. J. For. Res. 38, 52-62. Brodribb, T.J., Powers, J., Cochard, H., et al., 2020. Hanging by a thread? Forests and drought. Science. 368, 261-266. Chave, J., Coomes, D., Jansen, S., et al., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351-366. Chisholm, R. A., Muller-Landau, H. C., Rahman, K. A., et al., 2013. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214-1224. Chave, J., Rejou-Mechain, M., Burquez, A., et al., 2015. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177-3190. Chu, C.J., Bartlett, M., Wang, Y.S., et al., 2016. Does climate directly influence NPP globally? Glob. Change Biol. 22, 12-24. Chen, G.P., Cai, Q., Ma, S.H., et al., 2023. Climate and forest attributes influence above-ground biomass of deciduous broadleaf forests in China. J. Ecol. 111, 495-508. Culsee, H., Leuschner, et al., Moser, G., et al., 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 37, 960-974. Cai, Q., Ma, S.H., Sun, L.J., et al., 2023. Elevational Patterns of Tree Species Richness and Forest Biomass on Two Subtropical Mountains in China. Forests. 14, 1337. Ensslin, A., Rutten, G., Pommer, U., et al., 2015. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere. 6, 45. Feng, Y. H., Schmid, B., Loreau, M., et al., 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science. 376, 865-868. Fotis, A.T., Murphy, S.J., Ricart, R.D., et al., 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol. 106, 561-570. Fridley, J.D., Grime, J.P., Huston, M.A., et al., 2012. Comment on “productivity is a poor predictor of plant species richness”. Science. 335, 1441. Fox, J and Weisberg, S., 2019. An {R} Companion to Applied Regression, third ed. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Gonzalez-M., R., Posada, J.M., Carmona, C.P., et al., 2021. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol. Lett. 24, 451-463. Graler, B., Pebesma, E., Heuvelink, G., 2016. Spatio-Temporal Interpolation using gstat. The R Journal. 8, 204-218. Gonmadje, C., Picard, N., Gourlet-Fleury, S., et al., 2017. Altitudinal filtering of large-tree species explains above-ground biomass variation in an Atlantic Central African rain forest. J. Trop. Ecol. 33:143-154. Hao, M.H., Zhang, C.Y., Zhao, X.H., et al., 2018. Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecol. Evol. 8, 2395-2406. Huang, Y.Y., Chen, Y.X., Castro-Izaguirre, N., et al., 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 362, 80-83. Hernandez-Stefanoni, J.L., Reyes-Palomeque, R., Castillo-Santiago, M.J., et al., 2018. Effects of Sample Plot Size and GPS Location Errors on Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests. Remote Sens. 10, 1586. Hyvonen, R., Agren, G.I., Linder, S., et al., 2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463-480. Jucker, T., Bongalov, B., Burslem, D.F.R.P., et al., 2018. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989-1000. Lu, X.T., Yin, J.X., Jepsen, M.R., et al., 2010. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. For. Ecol. Manage. 260, 1798-1803. Liang, J.J., Crowther, T.W., Picard, N., et al. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science. 354, aaf8957. Lin, D.M., Lai, J.S., Muller-Landau, H.C., et al., 2012. Topographic variation in aboveground biomass in a subtropical evergreen Broad-Leaved Forest in China. PLoS ONE. 7, e48244. Linger, E., Hogan, J.A., Cao, M., et al., 2020. Precipitation influences on the net primary productivity of a tropical seasonal rainforest in Southwest China: A 9-year case study. For. Ecol. Manage. 467, 118153. Liu, Y.C., Yu, G.R., Wang, Q.F., et al., 2014. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob. Ecol. Biogeogr. 23, 323-333. Liu, X.J., Trogisch, S., He, J.S., et al., 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B. 285, 20181240. Liu, C.C., Fen, W.Y., Liu, Y.G., et al., 2009. Biomass of canopy and shrub layers of karst forests in Puding, Guizhou, China. Chin. J. Plant Ecol. 33, 698-705. [In Chinese]. Li, Y., Bao, W.K., Bongeres, F., et al., 2019. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ. 654, 684-693. Lutz, J.A., Furniss, T.J., Johnson, D.J., et al., 2018. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849-864. Matsuo, T., Martinez-Ramos, M., Bongers, F., et al., 2021. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J. Ecol. 109, 2871-2884. Michaletz, S. T., Cheng, D.L., Kerkhoff, A. J., et al., 2014. Convergence of terrestrial plant production across global climate gradients. Nature. 512, 39-43. Nyirambangust, B., Zibera, E, Uwizeye, F.K., et al., 2017. Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest. Biogeosciences. 14, 1285-1303. O’Brien, E.M., 2006. Biological relativity to water-energy dynamics. J. Biogeogr. 33, 1868-1888. Oksanen, J., Simpson, G.L., Blanchet, F.G., et al., 2022. vegan: Community Ecology Package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan. Pan, Y., Birdsey, R.A., Phillips, O.L., Jackson, R. B. (2013). The structure, distribution, and biomass of the world's forests. Annu. Rev. Ecol. Evol. Syst. 44, 593-622. Poorter, L., Bongers, F., Aide, T.M., et al., 2016. Biomass resilience of Neotropical secondary forests. Nature. 530, 211-214. Poorter, L., Van der Sande, M.T., Arets, E.J.M.M., et al., 2017. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423-1434. Poorter, L., Sande, M.T., Thompson, J., et al., 2015. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314-1328. Poulsen, J.R., Medjibe, V.P., White, L.J.T., et al., 2020. Old growth Afrotropical forests critical for maintaining forest Carbon. Glob. Ecol. Biogeogr. 29, 1785-1798. Pregitzer, K.S. and Euskirchen, E.S., 2004. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Change Biol. 10, 2052-2077. Phillips, J., Ramirez, S., Wayson, C., 2019. Differences in carbon stocks along an elevational gradient in tropical mountain forests of Colombia. Biotropica. 51, 490-499. Rejou-Mechain, M., Tanguy, A., Piponiot, C., et al., 2017. Biomass: Anr package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecol. Evol. 8, 1163-1167. Rodriguez-Hernandez, D.I., Deane, D.C., Wang, W.T., et al., 2021. Direct effects of selection on aboveground biomass contrast with indirect structure-mediated effects of complementarity in a subtropical forest. Oecologia. 196, 249-261. Shen, Y., Yu, S.X., Lian, J.Y., et al., 2016. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci. Rep. 6, 25304. Slik, J.W.F., Paoli, G., McGuire, K., et al., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22, 1261-1271. Toledo, M., Pena-Claros, M., Bongers, F., et al., 2012. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol. 100, 253-263. Tang, J.W., Yin, J.X., Qi, J.F., et al., 2012. Ecosystem carbon storage of tropical forests over limestone in Xishuangbannan, SW China. J. Trop. For. Sci. 24, 399-407. Ullah, F., Gilani, H., Sanaei, A., et al., 2021. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For. Ecol. Manage. 486, 118984. Varga, P., Chen, H.Y., Klinka, K., 2005. Tree-size diversity between single - and mixed - species stands in three forest types in western Canada. Can. J. For. Res. 35, 593-601. Venter, M., Dwyer, J., Dieleman, W., et al., 2017. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea. Glob. Change Biol. 23, 4873-4883. Van der Sande, M.T., Pena-Claros, M., Ascarrunz, N., et al., 2017. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223-1234. Wood, S.N., 2017. Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC. Wang, B.J., Fang, S.A., Wang, Y.Y., et al., 2022. The Shift from Energy to Water Limitation in Local Canopy Height from Temperate to Tropical Forests in China. Forests. 13, 639. Wang, Y.Q., Song, H.Q., Chen, Y.J., et al., 2023. Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability. Agric. For. Meteorol. 331,109329. Xu, B., Guo, Z.D., Piao, S.L., et al., 2010. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 53, 776-783. Yu, G.R., Chen, Z., Piao, S.L., et al., 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. U.S.A. 111, 4910-1915. Zeng, Z.Q., Tang, H., Hu, Q., Wang, S.L. et al., 2021. Tree biomass distribution patterns with a forest succession in subtropical China. Agron. J. 113, 706-710. Zhang, S.B., Slik, J. W. F., Zhang, J.L., et al., 2011. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 20, 241-250. Zhang, Y., Chen, H.Y.H., Reich, P.B., 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742-749. Zhang, Y., and Chen, H.Y.H., 2015. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 103, 1245-1252. Zhang, Y., Chen, H.Y.H., Taylor, A.R., 2017. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct. Ecol. 31, 419-426. Zheng, Z., Feng, Z.L., Cao, M., et al., 2006. Forest structure and biomass of a tropical seasonal rain forest in xishuangbanna, southwest China. Biotropica. 38, 318-327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||