Adachi J, Waddell PJ, Martin W et al., 2000. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA[J]. Journal of Molecular Evolution, 50 (4): 348—358
Aguinaldo AMA, Turbeville JM, Linford LS et al., 1997. Evidence for a clade of nematodes, arthropods and other moulting animals[J]. Nature, 387 (6632): 489—493
Barkman TJ, Chenery G, McNeal JR et al., 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny[J]. Proceedings of the National Academy of Sciences, 97 (24): 13166—13171
Bergsten J, 2005. A review of longbranch attraction[J]. Cladistics, 21 (2): 163—193
Bowe LM, Coat G, DePamphilis CW, 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales′ closest relatives are conifers[J]. Proceedings of the National Academy of Sciences of the United States of America, 97 (8): 4092—4097
Brinkmann H, Philippe H, 1999. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies[J]. Molecular Biology and Evolution, 16 (6): 817—825
Burleigh JG, Hilu KW, Soltis DE, 2009. Inferring phylogenies with incomplete data sets: a 5gene, 567taxon analysis of angiosperms[J]. BMC Evolutionary Biology, 9 (1): 61
Cai Z, Guisinger M, Kim HG et al., 2008. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions[J]. Journal of Molecular Evolution, 67 (6): 696—704
Chase MW, Soltis DE, Olmstead RG et al., 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL[J]. Annals of the Missouri Botanical Garden, 80 (3): 528—580
Chaw SM, Chang CC, Chen HL et al., 2004. Dating the monocotdicot divergence and the origin of core eudicots using whole chloroplast genomes[J]. Journal of Molecular Evolution, 58 (4): 424—441
Chaw SM, Parkinson CL, Cheng Y et al., 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers[J]. Proceedings of the National Academy of Sciences of the United States of America, 97 (8): 4086—4091
Chaw SM, Zharkikh A, Sung HM et al., 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences[J]. Molecular Biology and Evolution, 14 (1): 56—68
Chu KH, Qi J, Yu ZG et al., 2004. Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes[J]. Molecular Biology and Evolution, 21 (1): 200—206
Clegg MT, Gaut BS, Learn GH et al., 1994. Rates and patterns of chloroplast DNA evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 91 (15): 6795—6801
Corriveau JL, Coleman AW, 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species[J]. American Journal of Botany, 75 (10): 1443—1458
Cosner ME, Jansen RK, Moret BME et al., 2000. An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae[A]. In: Sankoff D, Nadeau JH eds. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families[M]. Dordrecht: Kluwer Academic Publishers, 99—121
Cosner ME, Jansen RK, Palmer JD et al., 1997. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families[J]. Current Genetics, 31 (5): 419—429
Cosner ME, Raubeson LA, Jansen RK, 2004. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes[J]. BMC Evolutionary Biology, 4 (1): 27
Cronn R, Liston A, Parks M et al., 2008. Multiplex sequencing of plant chloroplast genomes using Solexa sequencingbysynthesis technology[J]. Nucleic Acids Research, 36 (19): e122
Delsuc F, Brinkmann H, Philippe H, 2005. Phylogenomics and the reconstruction of the tree of life[J]. Nature Reviews Genetics, 6 (5): 361—375
de Queiroz A, Donoghue MJ, Kim J, 1995. Separate versus combined analysis of phylogenetic evidence[J]. Annual Review of Ecology and Systematics, 26 (1): 657—681
Doyle JA, 2006. Seed ferns and the origin of angiosperms[J]. The Journal of the Torrey Botanical Society, 133 (1): 169—209
Eisen JA, 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis[J]. Genome research, 8 (3): 163—167
Eisen JA, Hanawalt PC, 1999. A phylogenomic study of DNA repair genes, proteins, and processes[J]. Mutation Research, 435 (3): 171—213
Felsenstein J, 1978. Cases in which parsimony or compatibility methods will be positively misleading[J]. Systematic Biology, 27 (4): 401—410
Goremykin VV, HirschErnst KI, Wolfl S et al., 2003. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm[J]. Molecular Biology and Evolution, 20 (9): 1499—1505
Goremykin VV, HirschErnst KI, Wolfl S et al., 2004. The chloroplast genome of Nymphaea alba: wholegenome analyses and the problem of identifying the most basal angiosperm[J]. Molecular Biology and Evolution, 21 (7): 1445—1454
Graybeal A, 1998. Is it better to add taxa or characters to a difficult phylogenetic problem ?[J]. Systematic Biology, 47 (1): 9—17
Hajibabaei M, Xia J, Drouin G, 2006. Seed plant phylogeny: Gnetophytes are derived conifers and a sister group to Pinaceae[J]. Molecular Phylogenetics and Evolution, 40 (1): 208—217
Hendy MD, Penny D, 1989. A framework for the quantitative study of evolutionary trees[J]. Systematic Biology, 38 (4): 297—309
Hillis DM, 1996. Inferring complex phylogenies[J]. Nature, 383: 130—131
Hillis DM, 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias[J]. Systematic Biology, 47 (1): 3—8
Hilu KW, Borsch T, Muller K et al., 2003. Angiosperm phylogeny based on matK sequence information[J]. American Journal of Botany, 90 (12): 1758—1776
Huelsenbeck JP, 1997. Is the Felsenstein zone a fly trap?[J]. Systematic Biology, 46 (1): 69—74
Jansen RK, Cai Z, Raubeson LA et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genomescale evolutionary patterns[J]. Proceedings of the National Academy of Sciences, 104 (49): 19369—19374
Jansen RK, Kaittanis C, Saski C et al., 2006. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids[J]. BMC Evolutionary Biology, 6 (1): 32
Jansen RK, Raubeson LA, Boore JL et al., 2005. Methods for obtaining and analyzing whole chloroplast genome sequences[J]. Methods in Enzymology, 395: 348—384
Jeffroy O, Brinkmann H, Delsuc F et al., 2006. Phylogenomics: the beginning of incongruence?[J]. Trends in Genetics, 22 (4): 225—231
Kim J, Kim W, Cunningham CW, 1999. A new perspective on lower metazoan relationships from 18S rDNA sequences[J]. Molecular Biology and Evolution, 16: 423—427
Knox EB, Downie SR, Palmer JD, 1993. Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors[J]. Molecular Biology and Evolution, 10 (2):414—430
Knox EB, Palmer JD, 1999. The chloroplast genome arrangement of Lobelia thuliniana (Lobeliaceae): expansion of the inverted repeat in an ancestor of the Campanulales[J]. Plant Systematics and Evolution, 214 (1):49—64
Lake JA, 1987. A rateindependent technique for analysis of nucleic acid sequences: evolutionary parsimony[J]. Molecular Biology and Evolution, 4(2): 167—191
LeebensMack J, Raubeson LA, Cui L et al., 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one′s way out of the Felsenstein zone[J]. Molecular Biology and Evolution, 22 (10): 1948—1963
Lemieux C, Otis C, Turmel M, 2007. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genomebased phylogenies[J]. BMC biology, 5 (1): 2
Li W, Olmstead R, 1997. Molecular Evolution[M]. Sunderland, MA: Sinauer Associates
Lockhart PJ, Penny D, Soltis DE et al., 2005. The place of Amborella within the radiation of angiosperms[J]. Trends in Plant Science, 10 (5): 201—202
Lockhart P, Steel M, 2005. A tale of two processes[J]. Systematic Biology, 54 (6): 948—951
Lonsdale DM, Brears T, Hodge TP et al., 1988. The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity[J]. Philosophical Transactions of the Royal Society of London Series B, 319 (1193): 149—163
LyonsWeiler J, Hoelzer GA, 1997. Escaping from the felsenstein zone by detecting long branches in phylogenetic Data[J]. Molecular Phylogenetics and Evolution, 8 (3): 375—384
Magallón S, Castillo A, 2009. Angiosperm diversification through time[J]. American Journal of Botany, 96 (1): 349—365
Magallón S, Crane PR, Herendeen PS, 1999. Phylogenetic pattern, diversity, and diversification of eudicots[J]. Annals of the Missouri Botanical Garden, 86 (2): 297—372
Moore MJ, Dhingra A, Soltis PS et al., 2006. Rapid and accurate pyrosequencing of angiosperm plastid genomes[J]. BMC Plant Biology, 6 (1): 17
Moore MJ, Soltis PS, Bell CD et al., 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots[J]. Proceedings of the National Academy of Sciences, 107 (10): 4623—4628
Nei M, Kumar S, 2000. Molecular Evolution and Phylogenetics[M]. New York: Oxford University Press
Nickrent DL, Parkinson CL, Palmer JD et al., 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants[J]. Molecular Biology and Evolution, 17 (12): 1885—1895
Nozaki H, Ohta N, Matsuzaki M et al., 2003. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences[J]. Journal of Molecular Evolution, 57 (4): 377—382
Palmer JD, 1992. Mitochondrial DNA in plant systematics: applications and limitations[A]. In: Soltis PS, Soltis DE, Doyle JJ eds. Molecular Systematics of Plants[M]. New York: Chapman and Hall, 36—49
Palmer JD, Herbon LA, 1988. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence[J]. Journal of Molecular Evolution, 28 (1): 87—97
Parks M, Cronn R, Liston A, 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes[J]. BMC biology, 7 (1): 84
Philippe H, Lartillot N, Brinkmann H, 2005. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia[J]. Molecular Biology and Evolution, 22 (5): 1246—1253
Phillips MJ, Delsuc F, Penny D, 2004. Genomescale phylogeny and the detection of systematic biases[J]. Molecular Biology and Evolution, 21 (7): 1455—1458
Pombert JF, Otis C, Lemieux C et al., 2005. The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages[J]. Molecular Biology and Evolution, 22 (9): 1903—1918
Qiu YL, Dombrovska O, Lee J et al., 2005. Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes[J]. International Journal of Plant Sciences, 166 (5): 815—842
Savolainen V, Chase MW, Hoot SB et al., 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences[J]. Systematic Biology, 49 (2): 306—362
Shendure J, Ji H, 2008. Nextgeneration DNA sequencing[J]. Nature biotechnology, 26 (10): 1135—1145
Soltis DE, Senters AE, Zanis MJ et al., 2003. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery[J]. American Journal of Botany, 90 (3): 461—470
Soltis DE, Albert VA, Savolainen V et al., 2004. Genomescale data, angiosperm relationships, and ‘ending incongruence’: a cautionary tale in phylogenetics[J]. Trends in plant science, 9 (10): 477—483
Soltis DE, Soltis PS, 2004. Amborella not a “basal angiosperm”? Not so fast[J]. American Journal of Botany, 91 (6): 997—1001
Steel M, 2005. Should phylogenetic models be trying to ‘fit an elephant’?[J]. Trends in Genetics, 21 (6): 307—309
Stefanovi'c S, Rice DW, Palmer JD, 2004. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?[J]. BMC Evolutionary Biology, 4 (1): 35
Swofford DL, Olsen GJ, Waddell PJ et al., 1996. Phylogenetic inference[A]. In: Hillis DM, Moritz C, Mable BK eds. Phylogenetic Inference[M]. MA: Sinauer Associates, Sunderland, 407—514
Tangphatsornruang S, Sangsrakru D, Chanprasert J et al., 2010. The chloroplast genome sequence of Mungbean (Vigna radiata) determined by highthroughput pyrosequencing: structural organization and phylogenetic relationships[J]. DNA Research, 17 (1): 11—22
Tian X (田欣), Li DZ (李德铢), 2002. Application of DNA sequences in plant phylogentic study[J]. Acta Botanica Yunnanica (云南植物研究), 24: 170—184
Wakasugi T, Tsudzuki J, Ito S et al., 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii[J]. Proceedings of the National Academy of Sciences of the United States of America, 91 (21): 9794—9798
Wendel JF, Doyle JJ, 1998. Phylogenetic incongruence: window into genome history and molecular evolution[A]. In: Soltis DE, Soltis PS, Doyle JJ eds. Molecular Systematics of Plants II: DNA sequencing[M]. Boston: Kluwer, 265—296
Whittall JB, Syring J, Parks M et al., 2010. Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines[J]. Molecular Ecology, 19 (S1): 100—114
Willson SJ, 1999. A higher order parsimony method to reduce longbranch attraction[J]. Molecular Biology and Evolution, 16: 694—705
Wolfe KH, Morden CW, Palmer JD, 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 89 (22): 10648—10652
Wu CS, Wang YN, Liu SM et al., 2007. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp proteincoding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants[J]. Molecular Biology and Evolution, 24 (6): 1366—1379
Yu L (于黎), Zhang YP (张亚平), 2006. Phylogenomic——An attractive avenue to reconstruct “tree of life”[J]. Hereditas (遗传), 28 (11):1445—1450
Yu ZG, Zhou LQ, Anh VV et al., 2005. Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment[J]. Journal of Molecular Evolution, 60 (4): 538—545
Zeng CX, Zhang YX, Triplett JK et al., 2010. Large multilocus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence[J]. Molecular Phylogenetics and Evolution, 56 (2): 821—839
Zhang YJ, Ma PF, Li DZ, 2011. Highthroughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae)[J]. PloS ONE, 6 (5): e20596
Zhong B, Yonezawa T, Zhong Y et al., 2009. Episodic evolution and adaptation of chloroplast genomes in ancestral grasses[J]. PloS ONE, 4 (4): e5297
Zhong B, Yonezawa T, Zhong Y et al., 2010. The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics[J]. Molecular Biology and Evolution, 27 (12): 2855—2863
Zou XH, Zhang FM, Zhang JG et al., 2008. Analysis of 142 genes resolves the rapid diversification of the rice genus[J]. Genome Biology, 9 (3): R49 |