Abe M, Kobayashi Y, Yamamoto S et al., 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 309 (5737): 1052—1056
Andreasson E, Jenkins T, Brodersen P et al., 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses[J]. The EMBO Journal, 24 (14): 2579—2589
Blázquez MA, Weigel D, 2000. Integration of floral inductive signals in Arabidopsis[J]. Nature, 404 (6780): 889—892
Borner R, Kampmann G, Chandler J et al., 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis[J]. The Plant Journal, 24 (5): 591—599
Clough SJ, Bent AF, 1998. Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 16 (6): 735—743
Corbesier L, Vincent C, Jang S et al., 2007. FT protein movement contributes to longdistance signaling in floral induction of Arabidopsis[J]. Science, 316 (5827): 1030—1033
Dong JX, Chen CH, Chen ZX et al., 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology, 51 (1): 21—37
Eulgem T, Rushton PJ, Robatzek S et al., 2000. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 5(5):199—205
Eulgem T, Rushton PJ, Schmelzer E et al., 1999. Early nuclear events in plant defence signaling: rapid gene activation by WRKY transcription factors[J]. The EMBO Journal, 18 (17): 4689—4699
Jack T, 2004. Molecular and genetic mechanisms of floral control[J]. The Plant Cell, 16: S1—S17
Jaeger KE, Wigge PA, 2007. FT protein acts as a longrange signal in Arabidopsis[J]. Current Biology, 17 (12): 1050—1054
Jiang Y, Deyholos MK, 2009. Functional characterization of Arabidopsis NaClinducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 69 (1-2): 91—105
Lee H, Suh SS, Park E et al., 2000. The AGAMOUSLIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 14 (18): 2366—2376
Li SJ, Fu QT, Chen LG et al., 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, doi 10.1007/s0042501113752
Li SJ, Fu QT, Huang WD et al., 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress[J]. Plant Cell Reports, 28 (4): 683—693
Mandel MA, GustafsonBrown C, Savidge B et al., 1992. Molecular characterization of the Arabidopsis floral homeoticgene, APETALA1[J]. Nature, 360: 273—277
Michaels SD, Amasino RM, 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. The Plant Cell, 11 (5): 949—956
Michaels SD, Himelblau E, Kim SY et al., 2005. Integration of flowering signals in winterannual Arabidopsis[J]. Plant Physiology, 137 (1): 149—156
Mollier P, Montoro P, Delarue M et al., 1995. Promoterless gusA expression in a large number of Arabidopsis thaliana transformants obtained by the in planta infiltration method[J]. Comptes Rendus de l' Académie des sciences de Pairs, Sciences de la vie, 318 (4): 465—474
Moon J, Lee H, Kim M et al., 2005. Analysis of flowering pathway integrators in Arabidopsis[J]. Plant and Cell Physiology, 46 (2): 292—299
Moon J, Suh SS, Lee H et al., 2003. The SOC1 MADSbox gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 35 (5): 613—623
Mouradov A, Cremer F, Coupland G, 2002. Control of flowering time: interacting pathways as a basis for diversity[J]. The Plant Cell, 14: S111—S130
Rizhsky L, Davletova S, Liang H et al., 2004. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. Journal of Biological Chemistry, 279 (12): 11736—11743
Samach A, Onouchi H, Gold SE et al., 2000. Distinct roles of CON
STANS target genes in reproductive development of Arabidopsis[J]. Science, 288 (5471): 1613—1616
Sheldon CC, Burn JE, Perez PP et al., 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation[J]. The Plant Cell, 11 (3): 445—458
Turck F, Fornara F, Coupland G, 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage[J]. Plant Biology, 59: 573—594
Wigge PA, Kim MC, Jaeger KE et al., 2005. Integration of spatial and temporal information during floral induction in Arabidopsis[J]. Science, 309 (5737): 1056—1059
Wilson RN, Heckman JW, Somerville CR, 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days[J]. Plant Physiology, 100 (1): 403—408
Yoo SK, Chung KS, Kim J et al., 2005. CONSTANS activates suppressor of OVEREXPRESSION of CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiology, 139 (2): 770—778
Yu DQ, Chen CH, Chen ZX, 2001. Evidence for an important role of WRKY DNA binding: proteins in the regulation of NPR1 gene expression[J]. The Plant Cell, 13 (7): 1527—1539
Yu DQ (余迪求), Chen LG (陈利钢), Zhang LP (张利平), 2006. Transcription factor WRKY superfamily: Origin, structure and function[J]. Acta Botanica Yunnanica (云南植物研究), 28 (1): 69—77
Zhang LP (张利平), Yu DQ (余迪求), 2010. Mutation of APETALA1 affects the basal expression of WRKY genes[J]. Acta Botanica Yunnanica (云南植物研究), 32 (4): 355—360
Zheng Z, Mosher SL, Fan B et al., 2007. Functional analysis of Arabidopsis WRKY 25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology, doi: 10.1186/1471222972 |