Alvarez, S., Choudhury, S.R., Pandey, S., 2014. Comparative Quantitative Proteomics Analysis of the ABA Response of Roots of DroughtSensitive and DroughtTolerant Wheat Varieties Identifies Proteomic Signatures of Drought Adaptability. J. Proteome Res. 13, 1688-1701.
Aranjuelo, I., Molero, G., Erice, G., et al., 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot. 62, 111-123.
Ashraf, M., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206-216.
Bai, X.G., Yang, L.M., Yang, Y.Q., et al., 2011. Deciphering the Protective Role of Nitric Oxide against Salt Stress at the Physiological and Proteomic Levels in Maize. J. Proteome Res. 10, 4349-4364.
Bindschedler, L.V., Palmblad, M., Cramer, R., 2008. Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry. 69, 1962-1972.
Cai, X.B., Zhang, Y.Q., Shao, W., 2007. Degredation and Mechanism of Grassland of North Tibet Alpine Prairie. Soils. 39, 855-858.
Carlyle, C., Fraser, L.H., Turkington, R., 2014. Response of grassland biomass production to simulated climate change and clipping along an elevation gradient. Oecologia. 174, 1065-1073.
Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought from genes to the whole plant. Funct. Plant Biol. 30, 239-264.
Cheng, Z.Q., Targolli, J., Huang, X.Q., et al., 2002. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol. Breeding. 10, 71-82.
Foyer, C.H., Noctor, G., 2011. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiol. 155, 2-18.
Ghosh, D., Xu, J., 2014. Abiotic stress responses in plant roots: a proteomics perspective. Frontiers Plant Sci. 5, 6.
Gururani, M.A., Upadhyaya, C.P., Baskar, V., et al., 2013. Plant GrowthPromoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROSScavenging Enzymes and Improved Photosynthetic Performance. J. Plant Growth Regul. 32, 245-258.
He, Y.L., Zhou, H.K., Zhao, X.Q., et al., 2008. Alpine Grassland Degradation and Its Restoration on QinghaiTibet Plateau. Prataculture & Animal Husbandry. 11, 1-9.
Hossain, Z., Nouri, M.Z., Komatsu, S., 2012. Plant Cell Organelle Proteomics in Response to Abiotic Stress. J. Proteome Res. 11, 37-48.
Hu, J., Guo, Y.T., Li, Y.M., 2005. Research progress in protein posttranslation modification. Chinese Sci. Bull. 50, 1061-1072.
Jiang, S.S., Zhang, D., Kong, X.P., et al., 2013. Research Progress of Structural Characteristics and Functions of Calciumdependent Protein Kinases in Plants. Biotechnol Bull. 6, 12-19.
Johanson, U., Karlsson, M., Johansson, I., et al., 2001. The complete set of genes encoding major intrinsic proteins in arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126, 1358-1369.
Jones, M.M., Turner, N.C., 1978. Osmotic Adjustment in Leaves of Sorghum in Response to Water Deficits. Plant Physiol. 61, 122-126.
Klein, J.A., Harte, J., Zhao, X.Q., 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol. Lett. 7, 1170-1179.
Kong, X.X., Ma, L., Yang, L.M., et al., 2014. Quantitative Proteomics Analysis Reveals That the Nuclear CapBinding Complex Proteins Arabidopsis CBP20 and CBP80 Modulate the Salt Stress Response. J. Proteome Res. 13, 2495-2510.
Kosova, K., Vitamvas, P., Prasil, I.T., et al., 2011. Plant proteome changes under abiotic stressContribution of proteomics studies to understanding plant stress response. J. Proteomics. 74, 1301-1322.
Kushalappa, A.C., Gunnaiah, R., 2013. Metaboloproteomics to discover plant biotic stress resistance genes. Trends Plant Sci. 18, 522-531.
Lal, S., Gulyani, V., Khurana, P., 2008. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res. 17, 651-663.
Li, L., van Staden, J., 1998. Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regulation. 24, 55-66.
Li, X., Yang, S.H., Yang, Y.Q., et al., 2015. Comparative Physiological and Molecular Analyses of Intraspecific Differences of Stipa purpurea (Poaceae) Response to Drought. Plant Divers Resour. 37, 439-452.
Li, X., Yang, Y.Q., Ma, L., et al., 2014a. Comparative Proteomics Analyses of Kobresia pygmaea Adaptation to Environment along an Elevational Gradient on the Central Tibetan Plateau. Plos One. 9, e98410. doi: 10.1371/journal.pone.0098410.
Li, X., Yang, Y.Q., Sun, X.D., et al., 2014b. Comparative Physiological and Proteomic Analyses of Poplar (Populus yunnanensis) Plantlets Exposed to High Temperature and Drought. Plos One. 9, e107605.
Liu, G.T., Ma, L., Duan, W., et al., 2014. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. Bmc. Plant Biol. 14, 10.
Makela, P., Munns, R., Colmer, T.D., et al., 1998. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt or droughtstressed tomato. Aust J. Plant Physiol. 25, 655-663.
Mayfield, J.D., Paul, A.L., Ferl, R.J., 2012. The 1433 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system. J. Exp. Bot. 63, 3061-3070.
Mittler, R., Vanderauwera, S., Suzuki, N., et al., 2011. ROS signaling: the new wave? Trends Plant Sci. 16, 300-309.
Morgan, J.M., 1984. Osmoregulation and WaterStress in HigherPlants. Annu. Rev. Plant Phys. 35, 299-319.
Nelson, D.E., Repetti, P.P., Adams, T.R., et al., 2007. Plant nuclear factor Y (NFY) B subunits confer drought tolerance and lead to improved corn yields on waterlimited acres. P. Natl. Acad Sci. USA. 104, 16450-16455.
Ngara, R., Ndimba, B.K., 2014. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum. Plant Biol. 16, 1029-1032.
Nicotra, A.B., Davidson, A., 2010. Adaptive phenotypic plasticity and plant water use. Funct. Plant Biol. 37, 117-127.
Phillips, R.C., Mcmillan, C., Bridges, K.W., 1983. Phenology of Eelgrass, ZosteraMarina L, Along Latitudinal Gradients in NorthAmerica. Aquat Bot. 15, 145-156.
Porcel, R., RuizLozano, J.M., 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743-1750.
Rivero, R.M., Kojima, M., Gepstein, A., et al., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. P. Natl. Acad Sci. USA. 104, 19631-19636.
Seneca, F.O., Palumbi, S.R., 2015. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467-1484.
Sergeant, K., Renaut, J., 2010. Plant Biotic Stress and Proteomics. Curr. Proteomics. 7, 275-297.
Shen, C.M., Liu, K.B., Morrill, C., et al., 2008. Ecotone shift and major droughts during the midlate holocene in the central Tibetan Plateau. Ecology. 89, 1079-1088.
Terzi, R., Saruhan Guler, N., Kutlu Caliskan, N., et al., 2013. Lignification response for rolled leaves of Ctenanthe setosa under longterm drought stress. Turk J. Biol. 37, 614-619.
Turgut, R., Kadioglu, A., 1998. The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa. Biol. Plantarum. 41, 629-633.
Wang, L.J., Li, X.F., Chen, S.Y., et al., 2009. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA (3). Biotechnol. Lett. 31, 313-319.
Wang, Q.X., Fan, X.H., Wang, M.B., 2014. Recent warming amplification over high elevation regions across the globe. Clim Dynam. 43, 87-101.
Xu, D.P., Duan, X.L., Wang, B.Y., et al., 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249-257.
Yang, Y.Q., Chen, J.H., Liu, Q., et al., 2012. Comparative Proteomic Analysis of the Thermotolerant Plant Portulaca oleracea Acclimation to Combined High Temperature and Humidity Stress. J. Proteome Res. 11, 3605-3623.
Yang, Y.Q., Dong, C., Yang, S.H., et al., 2015a. Physiological and Proteomic Adaptation of the Alpine Grass Stipa purpurea to a Drought Gradient. Plos One. 10, e0117475.
Yang, Y.Q., Li, X., Kong, X.X., et al., 2015b. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Funct. Integr Genomic. 15, 295-307.
Yordanov, I., Velikova, V., Tsonev, T., 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 38, 171-186.
Young, C., Truman, P., 2012. Proteins isolated with TRIzol are compatible with twodimensional electrophoresis and mass spectrometry analyses. Anal Biochem. 421, 330-332.
Zhang, L.S., Zhao, W.M., 2003. LEA Protein Functions to Tolerance Drought of the Plant. Plant Physiol. Commun. 39, 61-66.
Zhang, Z.C., Liang, Y., Li, C., 2014. Review on plant MAPK cascades and their functions. J. Northwest A & F Univers (Nat. Sci. Rd.). 42, 207-214.
Zhuang, Q., He, J., Lu, Y., et al., 2010. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a processbased biogeochemical model. Global Ecol. Biogeogr. 19, 649-662. |