Plant Diversity ›› 2017, Vol. 39 ›› Issue (02): 104-110.DOI: 10.1016/j.pld.2017.01.004
• Articles • Previous Articles
Xue Donga, Xiaodong Jianga, Guoqiang Kuangb, Qingbo Wangb, Micai Zhonga, Dongmin Jina, Jinyong Hua
Received:
2016-08-04
Revised:
2017-01-25
Online:
2017-04-25
Published:
2021-11-05
Contact:
Jinyong Hu
Supported by:
Xue Dong, Xiaodong Jiang, Guoqiang Kuang, Qingbo Wang, Micai Zhong, Dongmin Jin, Jinyong Hu. Genetic control of flowering time in woody plants: Roses as an emerging model[J]. Plant Diversity, 2017, 39(02): 104-110.
Add to citation manager EndNote|Ris|BibTeX
Alsheikh, M., Suso, H.-P., Robson, M., Battey, N., Wetten, A., 2002. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. v. semperflorens. Plant Cell Rep. 20. 1173-1180. Andres, F., Coupland, G., 2012. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13. 627-639. Angel, A., Song, J., Yang, H., Questa, J.I., Dean, C., Howard, M., 2015. Vernalizing cold is registered digitally at FLC. Proc. Natl. Acad. Sci. U. S. A. 112. 4146-4151. Bendahmane, M., Dubois, A., Raymond, O., Bris, M.L., 2013. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 64. 847-857. Bossdorf, O., Richards, C.L., Pigliucci, M., 2008. Epigenetics for ecologists. Ecol. Lett. 11. 106-115. Brunner, A.M., Evans, L.M., Hsu, C.-Y., Sheng, X., Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation?. Front. Plant Sci. 5. Cajlacjan, M.C., 1937. Concerning the hormonal nature of plant development processes. Comptes Rendus De. L Acad. Des. Sci. De. L Urss 16. 227-230. Cho, S.H., Coruh, C., Axtell, M.J., 2012. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in physcomitrella patens. Plant Cell 24. 4837-4849. Chuck, G., Meeley, R., Irish, E., Sakai, H., Hake, S., 2007. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 39. 1517-1521. Coustham, V., Li, P., Strange, A., Lister, C., Song, J., Dean, C., 2012. Quantitative modulation of polycomb silencing underlies natural variation in vernalization. Science 337. 584-587. Crespel, L., Chirollet, M., Durel, C., Zhang, D., Meynet, J., Gudin, S., 2002. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor. Appl. Genet. 105. 1207-1214. Debener, T., Mattiesch, L., 1999. Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor. Appl. Genet. 99. 891-899. Debener, T., Mattiesch, L., Vosman, B., 2001. A molecular marker map for roses. In: Zieslin, N., Agbaria, H. (Eds.), Proceedings of the Third International Symposium on Rose Research and Cultivation, pp. 283-287 (Acta Horticulturae; vol.). Desta, Z.A., Ortiz, R., 2014. Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19. 592-601. Ding, J., Nilsson, O., 2016. Molecular regulation of phenology in trees — because the seasons they are a-changin'. Curr. Opin. Plant Biol. 29. 73-79. Dong, X., Reimer, J., Gobel, U., et al, 2012. Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements. Genome Biol. 13. R117. Dubois, A., Carrere, S., Raymond, O., et al, 2012. Transcriptome database resource and gene expression atlas for the rose. BMC Genomics 13. 638. Duchesne, N., 1766. Histoire Naturelle Des Fraisiers. Didot Panckoucke, C. J, Paris. Dugo, M.L., Satovic, Z., Millan, T., et al, 2005. Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor. Appl. Genet. 111. 511-520. Ellis, B., Jansson, S., Strauss, S., Tuskan, G., 2010. Why and how Populus became a “model tree”. In: Jansson, S., Bhalerao, R., Groover, A. (Eds.), Genetics and Genomics of Populus, Plant Genetics and Genomics: Crops and Models, vol. 8. Springer, New York, pp. 3-14. Falke, K.C., Glander, S., He, F., Hu, J., De Meaux, J., Schmitz, G., 2013. The spectrum of mutations controlling complex traits and the genetics of fitness in plants. Curr. Opin. Genet. Dev. 23. 665-671. Feng, S., Jacobsen, S.E., 2011. Epigenetic modifications in plants: an evolutionary perspective. Curr. Opin. Plant Biol. 14. 179-186. Fillatti, J.J., Sellmer, J., Mccown, B., Haissig, B., Comai, L., 1987. Agrobacterium mediated transformation and regeneration of Populus. Mol. General Genet. 206. 192-199. Fornara, F., De Montaigu, A., Coupland, G., 2010. SnapShot: control of flowering in Arabidopsis. Cell 141. e1-e2. Foucher, F., Chevalier, M., Corre, C., Soufflet-Freslon, V., Legeai, F., Oyant, L.H.S., 2008. New resources for studying the rose flowering process. Genome 51. 827-837. Foucher, F., Hibrand-Saint Oyant, L., Hamama, L., et al, 2015. Towards the rose genome sequence and its use in research and breeding. In: Debener, T., Linde, M. (Eds.), Vi International Symposium on Rose Research and Cultivation, Acta Horticulturae, vol. 1064. Leuven 1: Int Soc Horticultural Science, pp. 167-175. Golembeski, G.S., Imaizumi, T., 2015. Photoperiodic regulation of florigen function in Arabidopsis thaliana. Arabidopsis Book/Am. Soc. Plant Biol. 13. e0178. Heo, J.B., Sung, S., 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331. 76-79. Hess, G., Byrne, D.H., Zhang, H.B., 2007. Toward positional cloning of everblooming gene (evb) in plants: a BAC library of Rosa chinensis cv. Old Blush. In: Pemberton, H.B. (Ed.), Proceedings of the IVth International Symposium on Rose Research and Cultivation. Leuven 1: International Society Horticultural Science, pp. 169-174 (Acta Horticulturae; vol.). Hu, J.Y., Zhou, Y., He, F., et al, 2014. miR824-Regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. Plant Cell 26. 2024-2037. Hurst, C.C., 1941. Notes on the origin and evolution of our garden roses. J. R. Hortic. Soc. 66. 73-82. Ietswaart, R., Wu, Z., Dean, C., 2012. Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet. 28. 445-453. Ito, H., Ochiai, M., Kato, H., et al, 2012. Rose phytoene desaturase gene silencing by apple latent spherical virus vectors. HortScience 47. 1278-1282. Iwata, H., Gaston, A., Remay, A., et al, 2012. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 69. 116-125. Jansson, S., Douglas, C.J., 2007. Populus: a model system for plant biology. In: Annual Review of Plant Biology. Annual Review of Plant Biology, vol. 58. Palo Alto: Annual Reviews, pp. 435-458. Jian, H.Y., Zhang, H., Tang, K.X., et al, 2010. Decaploidy in Rosa praelucens byhouwer (Rosaceae) endemic to Zhongdian Plateau, Yunnan, China. Caryologia 63. 162-167. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., Dean, C., 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290. 344-347. Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., et al, 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48. 1589-1600. Kurokura, T., Mimida, N., Battey, N.H., Hytonen, T., 2013. The regulation of seasonal flowering in the Rosaceae. J. Exp. Bot. 64. 4131-4141. Lauter, N., Kampani, A., Carlson, S., Goebel, M., Moose, S.P., 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Natl. Acad. Sci. U. S. A. 102. 9412-9417. Li, J., Millar, A.A., 2013. A microRNA-resistant target transgene generates artefacts that misrepresent endogenous microRNA function in Arabidopsis. Mol. Plant 6. 577-580. Li, P., Tao, Z., Dean, C., 2015. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR. Genes & Dev. 29. 696-701. Li, S., Zhou, N., Zhou, Q., et al, 2015. Inheritance of perpetual blooming in Rosa chinensis ‘Old Blush’. Hortic. Plant J. 1. 108-112. Li, X., Gasic, K., Cammue, B., Broekaert, W., Korban, S.S., 2003. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218. 226-232. Li, X., Krasnyanski, S.F., Korban, S.S., 2002. Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol. Biochem. 40. 453-459. Linde, M., Hattendorf, A., Kaufmann, H., Debener, T., 2006. Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor. Appl. Genet. 113. 1081-1092. Lister, R., Gregory, B.D., Ecker, J.R., 2009. Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr. Opin. Plant Biol. 12. 107-118. Liu, F., Marquardt, S., Lister, C., Swiezewski, S., Dean, C., 2010. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327. 94-97. Longhi, S., Giongo, L., Buti, M., et al, 2014. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic. Res. 1. 1. Magnard, J.-L., Roccia, A., Caissard, J.-C., et al, 2015. Biosynthesis of monoterpene scent compounds in roses. Science 349. 81-83. Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q., Dean, C., 2014. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol. Cell 54. 156-165. Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157. 1819-1829. Michaels, S.D., Amasino, R.M., 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11. 949-956. Michaels, S.D., Amasino, R.M., 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13. 935-941. Moghaddam, H.H., Leus, L., De Riek, J., Van Huylenbroeck, J., Van Bockstaele, E., 2012. Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses. Euphytica 184. 413-427. Mohamed, R., Wang, C.T., Ma, C., et al, 2010. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. 62. 674-688. Nair, S.K., Wang, N., Turuspekov, Y., et al, 2010. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc. Natl. Acad. Sci. U. S. A. 107. 490-495. Nakano, Y., Higuchi, Y., Yoshida, Y., Hisamatsu, T., 2015. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria x ananassa. J. Plant Physiol. 177. 60-66. Oosumi, T., Gruszewski, H.A., Blischak, L.A., et al, 2005. High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223. 1219-1230. Otagaki, S., Ogawa, Y., Hibrand-Saint Oyant, L., et al, 2015. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses. Plant Biol. 17. 808-815. Pankin, A., Campoli, C., Dong, X., et al, 2014. Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics 198. 383. Pati, P.K., Rath, S.P., Sharma, M., Sood, A., Ahuja, P.S., 2006. In vitro propagation of rose—a review. Biotechnol. Adv. 24. 94-114. Pei, H., Ma, N., Chen, J., et al, 2013. Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS One 8. e64290. Pei, H., Ma, N., Tian, J., et al, 2013. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol. 163. 775-791. Petterle, A., Karlberg, A., Bhalerao, R.P., 2013. Daylength mediated control of seasonal growth patterns in perennial trees. Curr. Opin. Plant Biol. 16. 301-306. Randoux, M., Daviere, J.M., Jeauffre, J., et al, 2014. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. New Phytol. 202. 161-173. Randoux, M., Jeauffre, J., Thouroude, T., et al, 2012. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. J. Exp. Bot. 63. 6543-6554. Remay, A., Lalanne, D., Thouroude, T., Le Couviour, F., Hibrand-Saint Oyant, L., Foucher, F., 2009. A survey of flowering genes reveals the role of gibberellins in floral control in rose. Theor. Appl. Genet. 119. 767-781. Richards, E.J., 2011. Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 14. 1-6. Roberts, A.V., Gladis, T., Brumme, H., 2009. DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep. 28. 61-71. Schneeberger, K., 2014. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat. Rev. Genet. 15. 662-676. Schneeberger, K., Ossowski, S., Lanz, C., et al, 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat. Meth 6. 550-551. Semeniuk, P., 1971. Inheritance of recurrent blooming in Rosa-wichuraiana. J. Hered. 62. 203. Shulaev, V., Sargent, D.J., Crowhurst, R.N., et al, 2011. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43. 109-116. Song, J., Angel, A., Howard, M., Dean, C., 2012. Vernalization – a cold-induced epigenetic switch. J. Cell Sci. 125. 3723-3731. Spiller, M., Linde, M., Hibrand-Saint Oyant, L., et al, 2011. Towards a unified genetic map for diploid roses. Theor. Appl. Genet. 122. 489-500. Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N.J., Dean, C., 2013. R-Loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340. 619-621. Swarup, K., Alonso-Blanco, C., Lynn, J.R., et al, 1999. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 20. 67-77. Swiezewski, S., Liu, F., Magusin, A., Dean, C., 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462. 799-802. Tuskan, G.A., Difazio, S., Jansson, S., et al, 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313. 1596-1604. Vamosi, J.C., Dickinson, T.A., 2006. Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int. J. Plant Sci. 167. 349-358. Vergne, P., Maene, M., Gabant, G., Chauvet, A., Debener, T., Bendahmane, M., 2009. Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell, Tissue Organ Cult. (PCTOC) 100. 73-81. Verhoeven, K.J.F., Van Gurp, T.P., Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLoS One 7. Vries, D.P., 1976. Juvenility in hybrid tea-roses. Euphytica 25. 321-328. Wang, J.-W., Park, M.Y., Wang, L.-J., et al, 2011. MiRNA control of vegetative phase change in trees. PLoS Genet. 7. e1002012. Xing, W., Bao, Y., Luo, P., Bao, M., Ning, G., 2014. An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa. Acta Physiol. Plant. 36. 2013-2023. Xing, W., Wang, Z., Wang, X.Q., Bao, M.Z., Ning, G.G., 2014. Over-expression of an FT homolog from Prunus mume reduces juvenile phase and induces early flowering in rugosa rose. Sci. Hortic. 172. 68-72. Yan, Z., Visser, P.B., Hendriks, T., Prins, T.W., Stam, P., Dolstra, O., 2007. QTL analysis of variation for vigour in rose. Euphytica 154. 53-62. Yokoya, K., Roberts, A.V., Mottley, J., Lewis, R., Brandham, P.E., 2000. Nuclear DNA amounts in roses. Ann. Bot. 85. 557-561. Yu, C., Luo, L., Pan, H., Guo, X., Wan, H., Zhang, Q., 2015. Filling gaps with construction of a genetic linkage map in tetraploid roses. Front. Plant Sci. 5. 796. Yu, S., Lian, H., Wang, J.W., 2015. Plant developmental transitions: the role of microRNAs and sugars. Curr. Opin. Plant Biol. 27. 1-7. Zakizadeh, H., Lütken, H., Sriskandarajah, S., Serek, M., Müller, R., 2012. Transformation of miniature potted rose (Rosa hybrida cv. Linda) with P SAG12 -ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Rep. 32. 195-205. Zhou, C., Wang, J., 2013. Molecular mechanisms of flowering control in perennial herbaceous plants. Chin. J. Cell Biol. 35. 1073-1076. Zhu, Q.H., Upadhyaya, N.M., Gubler, F., Helliwell, C.A., 2009. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol. 9. 149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||