Plant Diversity ›› 2019, Vol. 41 ›› Issue (05): 300-306.DOI: 10.1016/j.pld.2019.07.001
• Articles • Previous Articles Next Articles
Xin Zhanga,b, Le Zhangb,c, Johann Schinnerld, Wei-Bang Sunb,c, Gao Chenb,c
Received:
2019-03-24
Revised:
2019-06-30
Online:
2019-10-25
Published:
2019-11-21
Contact:
Wei-Bang Sun,E-mail addresses:wbsun@mail.kib.ac.cn;Gao Chen,E-mail addresses:chen_gao@mail.kib.ac.cn.
Supported by:
Xin Zhang, Le Zhang, Johann Schinnerl, Wei-Bang Sun, Gao Chen. Genetic diversity and population structure of Hibiscus aridicola, an endangered ornamental species in dry-hot valleys of Jinsha River[J]. Plant Diversity, 2019, 41(05): 300-306.
Add to citation manager EndNote|Ris|BibTeX
类别 Classification | 柽柳灌丛 Tamarix thickets | 胡杨疏林 Populus euphratica woodlands | 沙地 Sand lands | 农田 Farmlands | 水体 Water bodies | 芦苇草地 Phragmites australis grasslands | 总和 Total | 制图精度(%) Mapping accuracy |
---|---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 9 982 | 3 121 | 1 375 | 102 | 48 | 160 | 14 788 | 67.5 |
胡杨疏林 Populus euphratica woodlands | 6 403 | 23 758 | 413 | 30 | 91 | 523 | 31 218 | 76.1 |
沙地 Sand lands | 1 424 | 228 | 38 380 | 0 | 21 | 1 | 40 054 | 95.8 |
农田 Farmlands | 8 | 13 | 0 | 9 881 | 1 | 33 | 9 936 | 99.4 |
水体 Water bodies | 0 | 0 | 0 | 0 | 58 371 | 14 | 58 385 | 99.9 |
芦苇草地 Phragmites australis grasslands | 569 | 1 658 | 23 | 858 | 2 110 | 15 964 | 21 182 | 75.4 |
综合 Total | 18 386 | 28 778 | 40 191 | 10 871 | 60 642 | 16 695 | 175 563 | — |
用户精度 User accuracy (%) | 54.3 | 82.6 | 95.5 | 90.9 | 96.3 | 95.6 | — | — |
总精度 Total accuracy = 89.0%; Kappa系数 Kappa coefficient = 0.86 |
Table 1 Error matrix of wrongly and omissively classified pixels of classification types
类别 Classification | 柽柳灌丛 Tamarix thickets | 胡杨疏林 Populus euphratica woodlands | 沙地 Sand lands | 农田 Farmlands | 水体 Water bodies | 芦苇草地 Phragmites australis grasslands | 总和 Total | 制图精度(%) Mapping accuracy |
---|---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 9 982 | 3 121 | 1 375 | 102 | 48 | 160 | 14 788 | 67.5 |
胡杨疏林 Populus euphratica woodlands | 6 403 | 23 758 | 413 | 30 | 91 | 523 | 31 218 | 76.1 |
沙地 Sand lands | 1 424 | 228 | 38 380 | 0 | 21 | 1 | 40 054 | 95.8 |
农田 Farmlands | 8 | 13 | 0 | 9 881 | 1 | 33 | 9 936 | 99.4 |
水体 Water bodies | 0 | 0 | 0 | 0 | 58 371 | 14 | 58 385 | 99.9 |
芦苇草地 Phragmites australis grasslands | 569 | 1 658 | 23 | 858 | 2 110 | 15 964 | 21 182 | 75.4 |
综合 Total | 18 386 | 28 778 | 40 191 | 10 871 | 60 642 | 16 695 | 175 563 | — |
用户精度 User accuracy (%) | 54.3 | 82.6 | 95.5 | 90.9 | 96.3 | 95.6 | — | — |
总精度 Total accuracy = 89.0%; Kappa系数 Kappa coefficient = 0.86 |
类别 Classification | 像元数 Number of pixels | 面积 Area (km2) |
---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 405.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 336.4 |
芦苇草地 Phragmites australis grasslands | 316 968 | 285.3 |
水体 Water bodies | 159 345 | 143.4 |
Table 2 Areas of Tamarix thickets, Populus euphratica woodlands, Phragmites australis grasslands and water bodies in the study area derived by remote sensing interpretation
类别 Classification | 像元数 Number of pixels | 面积 Area (km2) |
---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 405.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 336.4 |
芦苇草地 Phragmites australis grasslands | 316 968 | 285.3 |
水体 Water bodies | 159 345 | 143.4 |
像元数 Number of pixels | 最小值 Minimum | 最大值 Maximum | 众数 Mode | 平均值 Average | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 0.005 | 1.653 | 0.182 | 0.253 | 0.158 | 62.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 0.007 | 1.849 | 0.102 | 0.252 | 0.178 | 70.5 |
Table 3 Statistical characteristics of leaf area indices of Tamarix thickets and Populus euphratica woodlands
像元数 Number of pixels | 最小值 Minimum | 最大值 Maximum | 众数 Mode | 平均值 Average | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 0.005 | 1.653 | 0.182 | 0.253 | 0.158 | 62.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 0.007 | 1.849 | 0.102 | 0.252 | 0.178 | 70.5 |
1 | Bai Y, Xu HL, Tu WX, Ling HB, Fu JY, Wang XY (2013). Population structure and spatial distribution of the Populus euphratica in the mainstream of the Tarim River.Acta Botanica Boreali-Occidentalia Sinica, 33, 1216-1223.(in Chinese with English abstract) [白元, 徐海量, 涂文霞, 凌红波, 傅荩仪, 王希义 (2013). 塔里木河干流胡杨种群结构与分布格局研究. 西北植物学报, 33, 1216-1223.] |
2 | Deng CZ, Zhang XM, Li L, Wu JX, Zhu JT, Liu GJ, Lü CY (2010). Community characteristics and population structure of Populus euphratica Oliv in lower reaches of Tarim River.Journal of Desert Research, 30, 589-595.(in Chinese with English abstract) [邓潮洲, 张希明, 李利, 吴俊侠, 朱军涛, 刘国军, 吕朝燕 (2010). 塔里木河下游胡杨群落特征及种群结构分析. 中国沙漠, 30, 589-595.] |
3 | Guli J, Chen X, Ma ZG, Chang C (2009). Classification of sparse desert riparian forest in extreme arid region.Journal of Desert Research, 29, 1153-1161.(in Chinese with English abstract) [古丽·加帕尔, 陈曦, 马忠国, 常存 (2009). 极端干旱区荒漠稀疏河岸林遥感分类研究. 中国沙漠, 29, 1153-1161.] |
4 | Huang Y, Bao AM, Wang SF, Wang YQ, Duan YB (2013). Eco-environmental change in the lower Tarim River under the influence of intermittent water transport.Acta Geographica Sinica, 68, 1251-1262.(in Chinese with English abstract) [黄粤, 包安明, 王士飞, 王永琴, 段远彬 (2013). 间歇性输水影响下的2001-2011年塔里木河下游生态环境变化. 地理学报, 68, 1251-1262.] |
5 | Liu HJ, Cheng WM, Long E (2007). Landscape changes in a degraded sandy land ecosystem—A case study in the Otindag Sandy Land, Inner Mongolia, China. Journal of Plant Ecology (Chinese Version), 31, 1063-1072.(in Chinese with English abstract) [刘海江, 程维明, 龙恩 (2007). 受损沙地生态系统景观变化分析——以内蒙古浑善达克沙地为例. 植物生态学报, 31, 1063-1072.] |
6 | Liu XH, Xu HL, Ling HB, Bai Y, Fu JY, Zhao XF (2013). Ecological water requirements in the lower reaches of the Tarim River.Journal of Desert Research, 33, 1198-1205.(in Chinese with English abstract) [刘新华, 徐海量, 凌红波, 白元, 傅荩仪, 赵新风 (2013). 塔里木河下游生态需水估算. 中国沙漠, 33, 1198-1205.] |
7 | Okin GS, de Las Heras MM, Saco PM, Throop HL, Vivoni ER, Parsons AJ, Wainwright J, Peters DPC (2015). Connectivity in dryland landscapes: Shifting concepts of spatial interactions.Frontiers in Ecology and the Environment, 13, 20-27. |
8 | Tao H, Gemmer M, Song YD, Jiang T (2008). Ecohydrological responses on water diversion in the lower reaches of the Tarim River, China.Water Resources Research, 44, W08422, doi: 10.1029/2007WR006186. |
9 | Xu H, Li Y, Xu GQ, Zou T (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation.Plant, Cell & Environment, 30, 399-409. |
10 | Xu HQ, Tang F (2013). Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance.Acta Ecologica Sinica, 33, 3249-3257.(in Chinese with English abstract) [徐涵秋, 唐菲 (2013). 新一代Landsat系列卫星: Landsat 8遥感影像新增特征及其生态环境意义. 生态学报, 33, 3249-3257.] |
11 | Yuan GF, Luo Y, Shao MA, Zhang P, Zhu XC (2015). |
12 | Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin.Science China Earth Sciences, 58, 1032-1042. |
13 | Yuan GF, Zhang P, Shao MA, Luo Y, Zhu XC (2014). Energy and water exchanges over a riparian Tamarix spp. stand in the lower Tarim River basin under a hyper-arid climate.Agricultural and Forest Meteorology, 194, 144-154. |
14 | Zhang HF (2007). The Research on Plant Community Structure and Dominant Species Pattern in the Lower Reaches of Tarim River. Master degree dissertation, Xinjiang Agricultural University, Ürümqi. 52-60.(in Chinese with English abstract). [张绘芳 (2007). 塔里木河下游植物群落结构特征及优势种群格局研究. 硕士学位论文, 新疆农业大学, 乌鲁木齐. 52-60.] |
15 | Zhang HF, Li X, Gao YQ (2012). Population’s pattern analysis based on high-resolution remote sensing images of Quick Bird.Xinjiang Agricultural Sciences, 49, 2029-2034.(in Chinese with English abstract) [张绘芳, 李霞, 高亚琪 (2012). 基于Quick Bird数据的胡杨、柽柳种群格局分析. 新疆农业科学,49, 2029-2034.] |
16 | Zhang HF, Li X, Wang JG, Yang YJ (2007). The structure characteristic of the plant community in the lower reaches of Tarim River.Ecology and Environment, 16, 1219-1224.(in Chinese with English abstract) [张绘芳, 李霞, 王建刚, 杨艳静 (2007). 塔里木河下游植物群落结构特征分析. 生态环境,16, 1219-1224.] |
17 | Zhang X, Liu XC, Xiao JD, Yang ZH (2005). Study on the EOS/MODIS image processing and its application in monitoring the vegetation change in the lower reaches of the Tarim River.Arid Zone Research, 22, 532-536.(in Chinese with English abstract) [张旭, 刘新春, 肖继东, 杨志华 (2005). EOS/MODIS影像处理在塔里木河下游植被监测中的应用. 干旱区研究, 22, 532-536.] |
18 | Zhang YM, Chen YN, Pan BR (2005). Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People’s Republic of China.Journal of Arid Environments, 63, 772-784. |
19 | Zhao YS (2003). Principle and Method of Analysis of Remote Sensing Application. Science Press, Beijing. 204-208.(in Chinese) [赵英时 (2003). 遥感应用分析原理与方法. 科学出版社, 北京. 204-208.] |
20 | Zhu JT, Yu JJ, Wang P, Wang ZY (2011). Quantitative classification and analysis of relationships between plant communities and their groundwater environment in the Ejin Desert Oasis of China.Chinese Journal of Plant Ecology, 35, 480-489.(in Chinese with English abstract) [朱军涛, 于静洁, 王平, 王志勇 (2011). 额济纳荒漠绿洲植物群落的数量分类及其与地下水环境的关系分析. 植物生态学报, 35, 480-489.] |
21 | Zhu JT, Yu JJ, Wang P, Yu Q, Eamus D (2013). Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern China.Ecohydrology, 6, 191-200. |
22 | Zhu XC, Yuan GF, Yi XB, Du T (2014). Leaf area index inversion of riparian forest in the lower basin of Tarim River based on Landsat 8 OLI images.Arid Land Geography, 37, 1248-1256.(in Chinese with English abstract) [朱绪超, 袁国富, 易小波, 杜涛 (2014). 基于Landsat 8 OLI影像的塔里木河下游河岸林叶面积指数反演. 干旱区地理, 37, 1248-1256.] |
[1] | Yu-Juan Zhao, Gen-Shen Yin, Xun Gong. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation [J]. Plant Diversity, 2023, 45(05): 513-522. |
[2] | Dan-Qi Li, Lu Jiang, Hua Liang, Da-Hai Zhu, Deng-Mei Fan, Yi-Xuan Kou, Yi Yang, Zhi-Yong Zhang. Resolving a nearly 90-year-old enigma: The rare Fagus chienii is conspecific with F. hayatae based on molecular and morphological evidence [J]. Plant Diversity, 2023, 45(05): 544-551. |
[3] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[4] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[5] | Qin Liu, Tian-Tian Xue, Xiao-Xia Zhang, Xu-Dong Yang, Fei Qin, Wen-Di Zhang, Lei Wu, Rainer W. Bussmann, Sheng-Xiang Yu. Distribution and conservation of near threatened plants in China [J]. Plant Diversity, 2023, 45(03): 272-283. |
[6] | Aabid Hussain Mir, Kiranmay Sarma, Krishna Upadhaya. Assessing the effectiveness of community managed forests for plant diversity conservation in Meghalaya, Northeast India [J]. Plant Diversity, 2022, 44(03): 243-254. |
[7] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
[8] | Jing-Qiu Feng, Ji-Hua Wang, Shi-Bao Zhang. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature [J]. Plant Diversity, 2022, 44(01): 101-108. |
[9] | Xiu-Jiao Zhang, Xiong-Fang Liu, De-Tuan Liu, Yu-Rong Cao, Zheng-Hong Li, Yong-Peng Ma, Hong Ma. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations [J]. Plant Diversity, 2021, 43(06): 472-479. |
[10] | Lin-Bo Jia, Gi-Soo Nam, Tao Su, Gregory W. Stull, Shu-Feng Li, Yong-Jiang Huang, Zhe-Kun Zhou. Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants [J]. Plant Diversity, 2021, 43(06): 480-491. |
[11] | Zhihua Zhou, Ronghong Shi, Yu Zhang, Xiaoke Xing, Xiaohua Jin. Orchid conservation in China from 2000 to 2020: Achievements and perspectives [J]. Plant Diversity, 2021, 43(05): 343-349. |
[12] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation [J]. Plant Diversity, 2021, 43(03): 181-191. |
[13] | Yu-Long Yu, Hui-Chun Wang, Zhi-Xiang Yu, Johann Schinnerl, Rong Tang, Yu-Peng Geng, Gao Chen. Genetic diversity and structure of the endemic and endangered species Aristolochia delavayi growing along the Jinsha River [J]. Plant Diversity, 2021, 43(03): 225-233. |
[14] | Urtnasan Mandakh, Munkhjargal Battseren, Danzanchadav Ganbat, Turuutuvshin Ayanga, Zolzaya Adiya, Almaz Borjigidai, Chunlin Long. Folk nomenclature of plants in Cistanche deserticola-associated community in South Gobi, Mongolia [J]. Plant Diversity, 2020, 42(06): 434-442. |
[15] | Yanfei Geng, Sailesh Ranjitkar, Qiaoshun Yan, Zhijun He, Baqi Su, Shengtao Gao, Junli Niu, Dengpan Bu, Jianchu Xu. Nutrient value of wild fodder species and the implications for improving the diet of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, China [J]. Plant Diversity, 2020, 42(06): 455-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||