Atsatt, P.R., Hearn, T.F., Nelson, R.L., et al., 1978. Chemical induction and repression of haustoria in Orthocarpus purpurascens (Scophulariaceae). Ann. Bot. 42, 1177-1184.
Bandaranayake, P.C.G., Filappova, T., Tomilov, A., et al., 2010. A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22, 1404-1419.
Bandaranayake, P.C.G., Yoder, J.I., 2013. Haustorium initiation and early development. In:Joel, D.M., Gressel, J., Musselman, L.J. (Eds.), Parasitic Orobanchaceae. Springer, Berlin, pp. 61-74.
Bardgett, R.D., Smith, R.S., Shiel, R.S., et al., 2006. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439, 969-972.
Cui, S., Wada, S., Tobimatsu, Y., et al., 2018. Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica. New Phytol. 218 (2), 710-723.
Heide-Jørgensen, H.S., 2008. Parasitic Flowering Plants. Brill Academic, Leiden, NL.
Honaas, L.A., Wafula, E.K., Yang, Z., et al., 2013. Functional genomics of a generalist parasitic plant:laser microdissection of host-parasite interface reveals hostspecific patterns of parasite gene expression. BMC Plant Biol. 13, 9.
Ishida, J.K., Wakatake, T., Yoshida, S., et al., 2016. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates the haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell 28, 1795-1814.
Jain, A., Poling, M.D., Karthikeyan, A.S., et al., 2007. Differential effects of sucrose and auxin on localized Pi deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol. 144, 232-247.
Jamison, D.S., Yoder, J.I., 2001. Heritable variation in quinone-induced haustorium development in the parasitic plant Triphysaria. Plant Physiol. 125, 1870-1879.
Kuijt, J., 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley, CA.
Li, A.R., Li, Y.J., Smith, S.E., et al., 2013. Nutrient requirements differ in two Pedicularis species in the absence of a host plant:implication for driving forces in the evolution of host preference of root hemiparasitic plants. Ann. Bot. 112, 1099-1106.
Li, A.R., Smith, F.A., Smith, S.E., et al., 2012. Two sympatric root hemiparasitic Pedicularis species differ in host dependency and selectivity under phosphorus limitation. Funct. Plant Biol. 39, 784-794.
Little, D.Y., Rao, H.Y., Oliva, S., et al., 2005. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl. Acad. Sci. USA 102 (38), 13693-13698.
Musselman, L.J., Dickison, W.C., 1975. The structure and development of the haustorium in parasitic Scrophulariaceae. Bot. J. Linn. Soc. 70, 183-212.
Naumann, J., Salomo, K., Der, J.P., et al., 2013. Single-copy nuclear genes place haustorial Hydnoraceae within Piperales and reveal a Cretaceous origin of multiple parasitic angiosperm lineages. PLoS One 8, e79204.
Press, M.C., Phoenix, G.K., 2005. Impacts of parasitic plants on natural communities. New Phytol. 166, 737-751.
Sui, X.L., Li, A.R., Chen, Y., et al., 2014. Arbuscular mycorrhizal fungi:potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Mycorrhiza 24, 187-195.
Westwood, J.H., Yoder, J.I., Timko, M.P., et al., 2010. The evolution of parasitism in plants. Trends Plant Sci. 15, 227-235.
Yoder, J.I., 1997. A species specific recognition system directs haustorium development in the parasitic plant Triphysaria (Scrophulariaceae). Planta 202, 407-413.
Yoshida, S., Cui, S., Ichihashi, Y., et al., 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67, 643-667. |