Plant Diversity ›› 2019, Vol. 41 ›› Issue (03): 166-173.DOI: 10.1016/j.pld.2019.05.001
• Articles • Previous Articles Next Articles
Feryal Kherissata, Dawud Al-Esawib
Received:
2018-01-21
Revised:
2019-04-29
Online:
2019-06-25
Published:
2019-08-15
Contact:
Feryal Kherissat,E-mail address:Feryal@mutah.edu.jo
Feryal Kherissat, Dawud Al-Esawi. Checklist of Wadi Hassan flora, Northeastern Badia, Jordan[J]. Plant Diversity, 2019, 41(03): 166-173.
Add to citation manager EndNote|Ris|BibTeX
树种 Species | 代码 Code | 树高 Height (m) | 测点直径 Diameter at measurement point (cm) | ||
---|---|---|---|---|---|
10a | 140a | 270a | |||
槐 Sophora japonica | So1 | 12.6 | 22.4 | 17.2 | 10.8 |
So2 | 14.7 | 26.3 | 18.6 | 14.5 | |
So3 | 16.4 | 31.6 | 21.5 | 17.6 | |
旱柳 Salix matsudana | Sa1 | 13.8 | 21.6. | 16.8 | 12.9 |
Sa2 | 15.7 | 29.1 | 22.6 | 18.5 | |
Sa3 | 18.4 | 34.2 | 28.7 | 22.8 |
Table 1 Basic characteristics of the sampling trees
树种 Species | 代码 Code | 树高 Height (m) | 测点直径 Diameter at measurement point (cm) | ||
---|---|---|---|---|---|
10a | 140a | 270a | |||
槐 Sophora japonica | So1 | 12.6 | 22.4 | 17.2 | 10.8 |
So2 | 14.7 | 26.3 | 18.6 | 14.5 | |
So3 | 16.4 | 31.6 | 21.5 | 17.6 | |
旱柳 Salix matsudana | Sa1 | 13.8 | 21.6. | 16.8 | 12.9 |
Sa2 | 15.7 | 29.1 | 22.6 | 18.5 | |
Sa3 | 18.4 | 34.2 | 28.7 | 22.8 |
树种 Species | 月份 Month | 回归方程 Regression equation | Q10 | R10 (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 6-8 | Y = 0.8945e0.0779x | 2.18 | 1.95 | 0.77** |
10-12 | Y = 0.5943e0.0892x | 2.44 | 1.45 | 0.87** | |
旱柳 Salix matsudana | 6-8 | Y = 0.8771e0.0582x | 1.79 | 1.57 | 0.82** |
10-12 | Y = 0.4674e0.0599x | 1.86 | 0.87 | 0.88** |
Table 2 Comparisons of respiration at a reference temperature of 10 °C (R10) and temperature-sensitivity coefficient (Q10) between two species
树种 Species | 月份 Month | 回归方程 Regression equation | Q10 | R10 (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 6-8 | Y = 0.8945e0.0779x | 2.18 | 1.95 | 0.77** |
10-12 | Y = 0.5943e0.0892x | 2.44 | 1.45 | 0.87** | |
旱柳 Salix matsudana | 6-8 | Y = 0.8771e0.0582x | 1.79 | 1.57 | 0.82** |
10-12 | Y = 0.4674e0.0599x | 1.86 | 0.87 | 0.88** |
树种 Species | 枝干高度 Stem height (cm) | 回归方程 Regression equation | 时间滞后 Time lag (min ) | Q10 | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 10 | Y = 0.8761e0.0736x | 154 | 2.09 | 0.722** |
140 | Y = 0.9024e0.0821x | 136 | 2.27 | 0.754* | |
270 | Y = 1.0132e0.0918x | 122 | 2.50 | 0.846** | |
旱柳 Salix matsudana | 10 | Y = 0.8115e0.0429x | 176 | 1.54 | 0.707** |
140 | Y = 0.9232e0.0547x | 152 | 1.73 | 0.854** | |
270 | Y = 0.9273e0.0749x | 126 | 2.11 | 0.955** |
Table 3 Fitted equations for stem respiration and temperature and temperature-sensitivity coefficient (Q10)
树种 Species | 枝干高度 Stem height (cm) | 回归方程 Regression equation | 时间滞后 Time lag (min ) | Q10 | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 10 | Y = 0.8761e0.0736x | 154 | 2.09 | 0.722** |
140 | Y = 0.9024e0.0821x | 136 | 2.27 | 0.754* | |
270 | Y = 1.0132e0.0918x | 122 | 2.50 | 0.846** | |
旱柳 Salix matsudana | 10 | Y = 0.8115e0.0429x | 176 | 1.54 | 0.707** |
140 | Y = 0.9232e0.0547x | 152 | 1.73 | 0.854** | |
270 | Y = 0.9273e0.0749x | 126 | 2.11 | 0.955** |
源 Source | 类型Ⅲ平方和 Type III sum of squares | 自由度 Degrees of freedom | 均方 Mean squares | F值 F values | 显著性 Significance |
---|---|---|---|---|---|
校正模型 Corrected model | 4 809.961a | 2 | 2 404.981 | 64.400 | 0.000 |
截距 Intercept | 836.282 | 1 | 836.282 | 22.394 | 0.000 |
直径倒数 Inverse of diameter | 3 700.128 | 1 | 3 700.128 | 99.081 | 0.000 |
树种 Species | 335.130 | 1 | 335.130 | 8.974 | 0.009 |
误差 Error | 560.168 | 15 | 37.345 | ||
总计 Summation | 1 5220.594 | 18 | |||
校正总计 Summation correction | 5 370.129 | 17 |
Table 4 Result of covariance analysis (Dependent variable: Daily stem respiration accumulation rate)
源 Source | 类型Ⅲ平方和 Type III sum of squares | 自由度 Degrees of freedom | 均方 Mean squares | F值 F values | 显著性 Significance |
---|---|---|---|---|---|
校正模型 Corrected model | 4 809.961a | 2 | 2 404.981 | 64.400 | 0.000 |
截距 Intercept | 836.282 | 1 | 836.282 | 22.394 | 0.000 |
直径倒数 Inverse of diameter | 3 700.128 | 1 | 3 700.128 | 99.081 | 0.000 |
树种 Species | 335.130 | 1 | 335.130 | 8.974 | 0.009 |
误差 Error | 560.168 | 15 | 37.345 | ||
总计 Summation | 1 5220.594 | 18 | |||
校正总计 Summation correction | 5 370.129 | 17 |
1 | Amthor JS (2000). The McCree-de Wit-Penning de Vries- Thornley respiration paradigms: 30 years later.Annals of Botany, 86, 1-20. |
2 | Araki MG, Utsugi H, Kajimoto T, Han Q, Kawasaki T, Chiba Y (2010). Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate, of Chamaecyparis obtusa trees.Journal of Forest Research, 15, 115-122. |
3 | Atkin OK, Tjeolker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature.TRENDS in Plant Science, 8, 343-351. |
4 | Brito P, Morales D, Wieser G, Jiménez MS (2010). Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit.Trees, 24, 523-531. |
5 | Ceschia É, Damesin C, Lebaube S, Pontailler JY, Dufrêne É (2002). Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica).Annals Forest Science, 59, 801-812. |
6 | Damesin C, Ceschia E, Goff NL, Ottorini JM, Dufrêne E (2002). Stem and branch respiration of beech: From tree measurements to estimations at the stand level.New Phytologist, 153, 159-172. |
7 | Edwards NT, Hanson PJ (1995). Stem respiration in a closed-canopy upland oak forest.Tree Physiology, 16, 433-439. |
8 | Kim MH, Nakane K, Lee JT, Bang HS, Na YE (2007). Stem/branch maintenance respiration of Japanese red pine stand.Forest Ecology and Management, 243, 283-290. |
9 | Lavigne MB (1996). Comparing stem respiration and growth of jack pine provenances from northern and southern locations.Tree Physiology, 16, 847-852. |
10 | Levy PE, Jarvis PG (1998). Stem CO2 fluxes in two Sahelian shrub species (Guiera senegalensis and Combretum micranthum).Functional Ecology, 12, 107-116. |
11 | Liberloo M, de Angelis P, Ceulemans R (2008). Stem CO2 efflux of a Populus nigra stand: Effects of elevated CO2, fertilization, and shoot size.Biologia Plantarum, 52, 299-306. |
12 | Ryan MG (1990). Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii.Canadian Journal of Forest Research, 20, 48-57. |
13 | Ryan MG (1991). Effects of climate change on plant respiration.Ecological Applications, 1, 157-167. |
14 | Ryan MG, Hubbard RM, Clark DA, Sanford RL Jr (1994). Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits.Oecologia, 100, 213-220. |
15 | Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996). Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status.Tree Physiology, 16, 333-343. |
16 | Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001). Tree and forest functioning in response to global warming.New Phytologist, 149, 369-399. |
17 | Sprugel DG (1990). Components of woody-tissue respiration in young Abies amabilis (Dougl.) Forbes trees.Trees, 4, 88-98. |
18 | Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO (2007). Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems.Functional Plant Biology, 34, 785-792. |
19 | Stockfors J (2000). Temperature variations and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up.Tree Physiology, 20, 1057-1062. |
20 | Sun JW, Yuan FH, Guan DX, Wu JB (2013). Dark respiration of terrestrial vegetations: A review.Journal of Applied Ecology, 24, 1739-1746.(in Chinese with English abstract)[孙金伟, 袁凤辉, 关德新, 吴家兵 (2013). 陆地植被暗呼吸的研究进展. 应用生态学报, 24, 1739-1746.] |
21 | Tarvainen L, Räntfors M, Wallin G (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.Tree Physiology, 34, 488-502. |
22 | Teskey RO, Saveyn A, Steppe K, McGuire MA (2008). Origin, fate and significance of CO2 in tree stems.New Phytologist, 177, 17-32. |
23 | Tjoelker MG, Oleksyn J, Reich PB (2001). Modelling respiration of vegetation: Evidence for a general temperature- dependent Q10.Global Change Biology, 7, 223-230. |
24 | Vose JM, Ryan MG (2002). Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis.Global Change Biology, 8, 182-193. |
25 | Wang M, Wu YX, Wu JL (2008). Stem respiration of dominant tree species in broad-leaved Korean pine mixed forest in Changbai Mountains.Chinese Journal of Applied Ecology, 19, 956-960.(in Chinese with English abstract)[王淼, 武耀祥, 武静莲 (2008). 长白山红松针阔叶混交林主要树种树干呼吸速率. 应用生态学报, 19 , 956-960.] |
26 | Wang WJ, Wang HM, Zu YG, Li XY, Koike T (2005). Characteristics of root, stem, and soil respiration Q10 temperature coefficients in forest ecosystems.Acta Phytoecologica Sinica, 29, 680-691.(in Chinese with English abstract)[王文杰, 王慧梅, 祖元刚, 李雪莹, 小池孝良 (2005). 林木非同化器官与土壤呼吸的温度系数Q10值的特征分析. 植物生态学报, 29, 680-691.] |
27 | Wang WJ, Yang FJ, Zu YG, Wang HM, Takagi K, Sasa K, Koike T (2003). Stem respiration of a larch (Larix gmelini) plantation in northeast China.Acta Botanica Sinica, 45, 1387-1397. |
28 | Wang XW, Mao ZJ, Sun T, Wu HJ (2011). Effects of temperature and sap flow velocity on CO2 efflux from stems of three tree species in spring and autumn in Northeast China.Acta Ecologica Sinica, 31, 3358-3367.(in Chinese with English abstract)[王秀伟, 毛子军, 孙涛, 吴海军 (2011). 春、秋季节树干温度和液流速度对东北3树种树干表面CO2释放通量的影响. 生态学报, 31, 3358-3367.] |
29 | Xu F, Wang CK, Wang XC (2011). Intra- and inter-specific variations in stem respiration for 14 temperate tree species in northeastern China.Acta Ecologica Sinica, 31, 3581-3589.(in Chinese with English abstract)[许飞, 王传宽, 王兴昌 (2011). 东北东部14个温带树种树干呼吸的种内种间变异. 生态学报, 31, 3581-3589.] |
30 | Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2011). Temporal and spatial variations of stem CO2 efflux of three species in subtropical China.Journal of Plant Ecology, 5, 229-237. |
31 | Yang Y, Zhao M, Xu XT, Sun ZZ, Yin GD, Piao SL (2014). Diurnal and seasonal change in stem respiration of Larix principis-rupprechtii trees, northern China.PLoS ONE, 9, e89294. |
32 | Zha T, Kellomäki S, Wang KY, Ryyppö A, Niinistö S (2004). Seasonal and annual stem respiration of Scots pine trees under boreal conditions.Annals of Botany, 94, 889-896. |
[1] | Jiao Qin, Wei Zhang, Shi-Bao Zhang, Ji-Hua Wang. Similar mycorrhizal fungal communities associated with epiphytic and lithophytic orchids of Coelogyne corymbosa [J]. Plant Diversity, 2020, 42(05): 362-369. |
[2] | Qi Xu, Simcha Lev-Yadun, Lu Sun, Zhe Chen, Bo Song, Hang Sun. Spinescent patterns in the flora of Jiaozi Snow Mountain, Southwestern China [J]. Plant Diversity, 2020, 42(02): 83-91. |
[3] | WANG Chong-Yun-, CHEN Mei-Qing-, HE Zhao-Rong-, BANG Ming-Chun-, LI Qi-Yang-, OU Guang-Long-, LANG Xue-Dong-, DANG Cheng-Lin. A Note on a Scleromicrophyllous Evengreen Broadleaved ForestAssociation Olea ferruginea, Pistacia weinmannifolia in Lancang (Upper Mekong) River [J]. Plant Diversity, 2012, 34(01): 81-88. |
[4] | LONG Cui-Ling. Species Composition and Life Form Feature of Vegetation Restoration in Gaps of Karst Forest in Maolan Nature Reserve, Guizhou Province [J]. Plant Diversity, 2007, 29(02): 201-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||