Plant Diversity ›› 2022, Vol. 44 ›› Issue (01): 11-19.DOI: 10.1016/j.pld.2021.06.010
• Articles • Previous Articles Next Articles
Anson Wanga,b, Anthony E. Meltona,b, Douglas E. Soltisa,b,c,d, Pamela S. Soltisb,c,d
Received:
2020-12-13
Revised:
2021-06-21
Online:
2022-02-25
Published:
2022-03-12
Contact:
Anthony E. Melton
Supported by:
Anson Wang, Anthony E. Melton, Douglas E. Soltis, Pamela S. Soltis. Potential distributional shifts in North America of allelopathic invasive plant species under climate change models[J]. Plant Diversity, 2022, 44(01): 11-19.
Add to citation manager EndNote|Ris|BibTeX
Achhireddy, N.R., Singh, M., 1984. Allelopathic effects of lantana (Lantana camara)on milkweedvine (Morrenia odorata). Weed Sci. 32, 757-761. Barkley, F.A., 1944. Schinus L. Brittonia 5, 160-198. Beans, C.M., Kilkenny, F.F., Galloway, L.F., 2012. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant. Biol. Invasions 14, 2067-2078. Beck, J., Böller, M., Erhardt, A., et al., 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecol. Inf. 19, 10-15. Bivand, R., Rundel, C., Pebesma, E., et al., 2018. Package ‘rgeos’. R package V0.4-2.https://cran.r-project.org/web/packages/rgeos/index.html. Boria, R.A., Olson, L.E., Goodman, S.M., et al., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol.Model. 275, 73-77. Bradley, B.A., Wilcove, D.S., Oppenheimer, M., 2010. Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 12, 1855-1872. Broennimann, O., Treier, U.A., Müller-Schärer, H., et al., 2007. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701-709. Burch, P.L., Zedaker, S.M., 2003. Removing the invasive tree Ailanthus altissima and restoring natural cover. Arboric. Urban For. 29, 18. Callaway, R.M., 2002. The detection of neighbors by plants. Trends Ecol. Evol. 17, 104-105. Callaway, R.M., Ridenour, W.M., 2004. Novel weapons:invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436-443. Catford, J.A., Bode, M., Tilman, D., 2018. Introduced species that overcome life history tradeoffs can cause native extinctions. Nat. Commun. 9, 2131. Chamberlain, S., 2016. Scrubr:Clean Biological Occurrence Records. R Package Version 0.1, 1, 162. Chamberlain, S., Ram, K., Hart, T., 2018. Spocc:Interface to Species Occurrence Data Sources. R Package Version 0.9.0. Chen, I.C., Hill, J.K., Ohlemüller, R., et al., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026. Chicoine, T.K., Fay, P.K., Nielsen, G.A., 1986. Predicting weed migration from soil and climate maps. Weed Sci. 34, 57-61. Danso, S.K.A., Bowen, G.D., Sanginga, N., 1992. Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141, 177-196. Diagne, C., Leroy, B., Vaissière, A.C., et al., 2021. High and rising economic costs of biological invasions worldwide. Nature 592, 1-6. Dlamini, P., Zachariades, C., Downs, C.T., 2018. The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinus terebinthifolius) and Indian laurel (Litsea glutinosa). South Afr. J. Bot. 114, 61-68. Dukes, J.S., Chiariello, N.R., Loarie, S.R., Field, C.B., 2011. Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes.Ecol. Appl. 21, 1887-1894. Duncan, C., Story, J., Sheley, R., 2017. Biology, Ecology, and Management of Montana Knapweeds. Montana State University Extension, Bozeman, Montana. Early, R., Sax, D.F., 2014. Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecol. Biogeogr. 23, 1356-1365. Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species.Methods Ecol. Evol. 1, 330-342. Eneh, F.U., Nwankwo, E.N., Okwuenu, P., 2016. Phytochemical analysis and toxicity of Casuarina equisetifola (whistling pine) to Sitophilus zeamais Motschulsky(Coleoptera:Curculionidae). Int. J. Entomol. Res. 1, 10-17. Gallagher, R.V., Beaumont, L.J., Hughes, L., Leishman, M.R., 2010. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790-799. Giória, M., Osborne, B.A., 2014. Resource competition in plant invasions:emerging patterns and research needs. Front. Plant Sci. 5, 501. Gomez-Aparicio, L., Canham, C.D., 2008. Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J. Ecol. 96, 447-458. Goncalves, E., Herrera, I., Duarte, M., et al., 2014. Global invasion of Lantana camara:has the climatic niche been conserved across continents? PloS One 9, e111468. Gordon, D.R., 1998. Effects of invasive, non-indigenous plant species on ecosystem processes:lessons from Florida. Ecol. Appl. 8, 975-989. Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147-186. Guzzetti, L., Galimberti, A., Bruni, I., et al., 2017. Bioprospecting on invasive plant species to prevent seed dispersal. Sci. Rep. 7, 13799. Heisey, R.M., 1996. Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am. J.Bot. 83, 192-200. Hellmann, J.J., Byers, J.E., Bierwagen, B.G., et al., 2008. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534-543. Hierro, J.L., Maron, J.L., Callaway, R.M., 2005. A biogeographical approach to plant invasions:the importance of studying exotics in their introduced and native range. J. Ecol. 93, 5-15. Higgins, S.I., Richardson, D.M., 2014. Invasive plants have broader physiological niches. Proc. Natl. Acad. Sci. U.S.A. 111, 10610-10614. Hijmans, R.J., 2017. Raster:geographic data analysis and modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster. Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high resolution interpolated climate surface for global land areas. Int. J. Climatol. 25, 1965-1978. Hijmans, R.J., Phillips, S., Leathwick, J., et al., 2017. Package ‘dismo’. Circle 9, 1-68. Itoo, Z.A., Reshi, Z.A., 2013. The multifunctional role of ectomycorrhizal associations in forest ecosystem processes. Bot. Rev. 79, 371-400. Jiménez-Valverde, A., 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecol. Biogeogr. 21, 498-507. Kaproth, M.A., McGraw, J.B., 2008. Seed viability and dispersal of the winddispersed invasive Ailanthus altissima in aqueous environments. For. Sci. 54, 490-496. Kartesz, J.T., 2015. Floristic Synthesis of North America. Version 1.0. Biota of North America Program (BONAP). Kong, C.H., Wang, P., Zhang, C.X., et al., 2006. Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res. 46, 290-295. Liang, Q., Xu, X., Mao, K., et al., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains.J. Biogeogr. 45, 1334-1344. Liu, Y., Oduor, A.M., Zhang, Z., et al., 2017. Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biol. 23, 3363-3370. Lobo, J.M., Jiménez-Valverde, A., Real, R., 2008. AUC:a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17, 145-151. McKenney, D.W., Pedlar, J.H., Lawrence, K., et al., 2007. Potential impacts of climate change on the distribution of North American trees. Bioscience 57, 939-948. Meng, P., Pei, H., Hu, W., et al., 2015. Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere 141, 219-226. Morgan, E.C., Overholt, W.A., 2005. Potential allelopathic effects of Brazilian pepper(Schinus terebinthifolius Raddi, Anacardiaceae) aqueous extract on germination and growth of selected Florida native plants. J. Torrey Bot. Soc. 132, 11-15. Mukherjee, A., Williams, D.A., Wheeler, G.S., et al., 2012. Brazilian peppertree(Schinus terebinthifolius) in Florida and South America:evidence of a possible niche shift driven by hybridization. Biol. Invasions 14, 1415-1430. Mummey, D.L., Rillig, M.C., 2006. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288, 81-90. Muscarella, R., Galante, P.J., Soley-Guardia, M., et al., 2014. ENM eval:an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Meth. Ecol. Evol. 5, 1198-1205. O'Donnell, J., Gallagher, R.V., Wilson, P.D., et al., 2012. Invasion hotspots for nonnative plants in Australia under current and future climates. Global Change Biol. 18, 617-629. Oksari, A.A., Susanty, D., Wanda, I.F., 2019. Allelopathic effect of invasive species air potato (Dioscorea bulbifera) on seeds germination of Polyalthia littoralis. Nus.Biosci. 11, 63-70. Oliveira, M.S.D., Gontijo, S.M., Teixeira, M.S., et al., 2018. Chemical composition and antifungal and anticancer activities of extracts and essential oils of Schinus terebinthifolius Raddi fruit. Rev. Fitos 12, 135-146. Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species:are bioclimate envelope models useful? Global Ecol.Biogeogr. 12, 361-371. Pedrol, N., González, L., Reigosa, M.J., 2006. Allelopathy and abiotic stress. In:Reigosa, M.J., Pedrol, N., González, L. (Eds.), Allelopathy. Springer Netherlands, Heidelberg, Germany, pp. 171-209. Perry, L.G., Thelen, G.C., Ridenour, W.M., et al., 2007. Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33, 2337-2344. Petitpierre, B., Kueffer, C., Broennimann, O., et al., 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344-1348. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. Planchuelo, G., Catálan, P., Delgado, J.A., 2016. Gone with the wind and the stream:dispersal in the invasive species Ailanthus altissima. Acta Oecol. 73, 31-37. Procópio, T.F., Fernandes, K.M., Pontual, E.V., et al., 2015. Schinus terebinthifolius leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti larvae. PLoS One 10, e0126612. Pyšek, P., Jarošík, V., Pergl, et al., 2009. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891-903. Pyšek, P., Richardson, D.M., Williamson, M., 2004. Predicting and explaining plant invasions through analysis of source area floras:some critical considerations.Divers. Distrib. 10, 179-187. R Core Team, 2017. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.Rproject.org/. Rayamajhi, M.B., Pratt, P.D., Tipping, P.W., et al., 2016. Seasonal growth, biomass allocation, and invasive attributes manifested by Dioscorea bulbifera L.(air-potato)plants generated from bulbils in Florida. Invasive Plant Sci. Manag. 9, 195-204. Šėžienė, V., Baležentienė, L., Ozolinčius, R., 2012. Allelopathic impact of some dominants in clean cuttings of Scots pine forest under climate change conditions. Ekologija 58, 59-64. Shriniwas, P., 2017. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L.leaves. Biochem. Biophys. Rep. 10, 76. Sharma, M., Hotpet, V., Sindhura, B.R., et al., 2017. Purification, characterization and biological significance of mannose binding lectin from Dioscorea bulbifera bulbils. Int. J. Biol. Macromol. 102, 1146-1155. Sheffield, J., Barrett, A.P., Colle, B., et al., 2013. North American climate in CMIP5 experiments. Part I:evaluation of historical simulations of continental and regional climatology. J. Clim. 26, 9209-9245. Shiels, A.B., 2011. Frugivory by introduced black rats (Rattus rattus) promotes dispersal of invasive plant seeds. Biol. Invasions 13, 781-792. Soberon, J., Peterson, A.T., 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodivers. Inf. 2, 1-10. Stefanowicz, A.M., Stanek, M., Nobis, M., et al., 2017. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci. Total Environ. 574, 938-946. Suárez-Mota, M.E., Ortiz, E., Villaseñor, J.L., et al., 2016. Ecological niche modeling of invasive plant species according to invasion status and management needs:the case of Chromolaena odorata (Asteraceae) in South Africa. Pol. J. Ecol. 64, 369-383. Swamy, V.N., 2017. Assessment of calorimetric, antibacterial and fastness properties of silk fabric dyed with Casuarina equisetifolia L. leaf extract. Indian J. Tradit. Knowl 16, 714-719. Taylor, S., Kumar, L., Reid, N., et al., 2012. Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS One 7, e35565. Thuiller, W., Georges, D., Engler, R., et al., 2016. Package ‘biomod2’. Treier, U.A., Broennimann, O., Normand, S., et al., 2009. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90, 1366-1377. Usman, K., Taiwo, O., Ogono, T., et al., 2014. An investigation of allelopathic, genotoxic and cytotoxic effects of Dioscorea dumetorum Kunth Tuber extracts. Agric.Biol. J. N. Am. 5, 183-192. Václavík, T., Meentemeyer, R.K., 2012. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18, 73-83. Vilà, M., Espinar, J.L., Hejda, M., et al., 2011. Ecological impacts of invasive alien plants:a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702-708. Walther, G.R., 2003. Plants in a warmer world. Perspect. Plant Ecol. Evol. Syst. 6, 169-185. Wang, C.J., Li, Q.F., Wan, J.Z., 2019. Potential invasive plant expansion in global ecoregions under climate change. PeerJ 7, e6479. Wilkin, P., 2001. Dioscoreaceae of south-central Africa. Kew Bull. 56, 361-404. Wilson, K.L., Johnson, L.A.S., 1989. Casuarinaceae. Flora Aust. 3, 100-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||