[1] Bailey, T.L., Boden, M., Buske, F.A., et al., 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, 202-208. [2] Bariola, P.A., Green, P.J., 1997. Plant ribonucleases. In Ribonucleases: Structure and Functions, Elsevier, pp. 163-190. [3] Bateman, A., Coin, L., Durbin, R., et al., 2004. The Pfam protein families database. Nucleic Acids Res. 32, 138-141. [4] Boskovic, R.I., Sargent, D.J., Tobutt, K.R., 2010. Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry. J. Exp. Bot. 61, 755-763. [5] Buti, M., Moretto, M., Barghini, E., et al., 2018. The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience. 7, 1-14. [6] Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. [7] Chen, C., Chen, H., Zhang, Y., et al., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 13, 1194-1202. [8] Chen, D.L., Delatorre, C.A., et al., 2000. Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. Planta. 211, 13-22. [9] Deshpande, R.A., Shankar, V., 2002. Ribonucleases from T2 family. Crit. Rev. Microbiol. 28, 79-122. [10] Dreesen, R.S.G., Vanholme, B.T.M., Luyten, K., et al., 2010. Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Mol. Breed. 26, 693-709. [11] Du, J., Ge, C., Li, T., et al., 2021. Molecular characteristics of S-RNase alleles as the determinant of self-incompatibility in the style of Fragaria viridis. Hortic. Res. 8, 185. [12] Du, J., Lv, Y., Xiong, J., et al., 2019. Identifying genome-wide sequence variations and candidate genes implicated in self-incompatibility by resequencing Fragaria viridis. Int. J. Mol. Sci. 20, 1039. [13] Edger, P.P., VanBuren, R., Colle, M., et al., 2018. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience. 7, 1-7. [14] Emms, D.M., Kelly, S., 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 1-14. [15] Evans, W., Jones, J.K., Cytology, 1967. Incompatibility in Fragaria. Can. J. Genet. Cytol. 9, 831-836. [16] Feng, C., Wang, J., Harris, A.J., et al., 2021. Tracing the diploid ancestry of the cultivated octoploid strawberry. Mol. Biol. Evol. 38, 478-485. [17] Feng, G., Burleigh, J.G., Braun, E.L., et al., 2017. Evolution of the 3R-MYB gene family in plants. Genome Biol. Evol. 9, 1013-1029. [18] Finn, R.D., Clements, J., Eddy, S.R., 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, 29-37. [19] Folta, K.M., Davis, T.M., 2006. Strawberry genes and genomics. CRC Crit. Rev. Plant Sci. 25, 399-415. [20] Gasteiger, E., Hoogland, C., Gattiker, A., et al., 2005. Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook, pp. 571-607. [21] Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644-652. [22] Greco, M., Chiappetta, A., Bruno, L., et al., 2012. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 63, 695-709. [23] Guindon, S., Dufayard, J.F., Lefort, V., et al., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321. [24] Hollender, C.A., Geretz, A.C., Slovin, J.P., et al., 2012. Flower and early fruit development in a diploid strawberry, Fragaria vesca. Planta. 235, 1123-1139. [25] Holub, E.B., 2001. The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2, 516-527. [26] Honsho, C., Ushijima, K., Anraku, M., et al., 2021. Association of T2/S-RNase with self-incompatibility of Japanese citrus accessions examined by transcriptomic, phylogenetic, and genetic approaches. Front. Plant Sci. 12, 121. [27] Hu, B., Jin, J., Guo, A.Y., et al., 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 31, 1296-1297. [28] Hummer, K.E., Hancock, J. 2009. Strawberry Genomics: Botanical History, Cultivation, Traditional Breeding, and New Technologies. Genetics and Genomics of Rosaceae. Springer, New York. [29] Igic, B., Kohn, J.R., 2001. Evolutionary relationships among self-incompatibility RNases. Proc. Natl. Acad. Sci. U.S.A. 98, 13167-13171. [30] Irie, M., 1999. Structure-function relationships of acid ribonucleases: lysosomal, vacuolar, and periplasmic enzymes. Pharmacol. Ther. 81, 77-89. [31] Ishimizu, T., Shinkawa, T., Sakiyama, F., et al., 1998. Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility. Plant Mol. Biol. 37, 931-941. [32] Jiang, S., An, H., Xu, F., et al., 2020. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. Gigascience. 9, giaa015. [33] Jiangtao, C., Yingzhen, K., Qian, W., et al., 2015. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan. 37, 91-97. [34] Jost, W., Bak, H., Glund, K., et al., 1991. Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur. J. Inorg. Chem. 198, 1-6. [35] Katoh, K., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066. [36] Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 12, 357-360. [37] Kock, M., Theierl, K., Stenzel, I., et al., 1998. Extracellular administration of phosphate-sequestering metabolites induces ribonucleases in cultured tomato cells. Planta. 204, 404-407. [38] Kubo, K.-i., Entani, T., Takara, A., et al., 2010. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science, 330, 796-799. [39] Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874. [40] Kurata, N., Kariu, T., Kawano, S., et al., 2002. Molecular cloning of cDNAs encoding ribonuclease-related proteins in Nicotiana glutinosa leaves, as induced in response to wounding or to TMV-infection. Biosci. Biotechnol. Biochem. 66, 391-397. [41] Lei, J., Xue, L., Guo, R., et al., 2016. The Fragaria species native to China and their geographical distribution. Acta Hortic. 1156, 37-46. [42] Li, Y., Pi, M., Gao, Q., et al., 2019. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Hortic. Res. 6, 61. [43] Liang, M., Cao, Z., Zhu, A., et al., 2020. Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nat. Plants. 6, 131-142. [44] Liston, A., Cronn, R., Ashman, T.L., 2014. Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. Am. J. Bot. 101, 1686-1699. [45] Lu, S., Wang, J., Chitsaz, F., et al., 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, 265-268. [46] Luhtala, N., Parker, R., 2010. T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem. Sci. 35, 253-259. [47] MacIntosh, G.C. 2011. RNase T2 family: enzymatic properties, functional diversity, and evolution of ancient ribonucleases. In Ribonucleases., Springer, pp. 89-114 [48] MacIntosh, G.C., Hillwig, M.S., Meyer, A., et al., 2010. RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Mol. Genet. Genomics. 283, 381-396. [49] McClure, B.A., Haring, V., Ebert, P.R., et al., 1989. Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature. 342, 955-957. [50] Meyers, B.C., Kozik, A., Griego, A., et al., 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 15, 809-834. [51] Mota, M., Tavares, L., Oliveira, C.M., 2007. Identification of S-alleles in pear (Pyrus communis L.) cv. ‘Rocha’ and other European cultivars. Sci. Hortic. 113, 13-19. [52] Njuguna, W., Liston, A., Cronn, R., et al., 2013. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Mol. Phylogenet. Evol. 66, 17-29. [53] Ortega, E., Sutherland, B.G., Dicenta, F., et al., 2005. Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed. 124, 188-196. [54] Pertea, M., Pertea, G.M., Antonescu, C.M., et al., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295. [55] Qiao, Q., Edger, P.P., Xue, L., et al., 2021. Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proc. Natl. Acad. Sci. U.S.A. 118. [56] Qiao, X., Yin, H., Li, L., et al., 2018. Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Front. Plant Sci. 9,161. [57] Ramanauskas, K., Igic, B., 2017. The evolutionary history of plant T2/S-type ribonucleases. PeerJ. 5, e3790. [58] Ramanauskas, K., Igic, B., 2021. RNase-based self-incompatibility in cacti. New Phytol. 231, 2039-2049. [59] Roalson, E., McCubbin A.G., 2003. S-RNases and sexual incompatibility: structure, functions, and evolutionary perspectives. Mol. Phylogenet. Evol. 29, 490-506. [60] Saint-Oyant, L., Ruttink, T., Hamama, L., et al., 2018. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants. 4, 473-484. [61] Sassa, H., Hirano, H., Ikehashi, H., 1993. Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Mol. Gen. Genet. 241, 17-25. [62] Sassa, H., Nishio, T., Kowyama, Y., et al., 1996. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol. Gen. Genet. 250, 547-557. [63] Sonneveld, T., Tobutt, K.R., Robbins, T.P., 2003. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor. Appl. Genet. 107, 1059-1070. [64] Sonneveld, T., Tobutt, K.R., Vaughan, S.P., et al., 2005. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell. 17, 37-51. [65] Steinbachs, J.E., Holsinger, K.E., 2002. S-RNase-mediated gametophytic self-incompatibility is ancestral in eudicots. Mol. Biol. Evol. 19, 825-829. [66] Taylor, C.B., Bariola, P.A., Delcardayre, S.B., et al., 1993. RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. U.S.A. 90, 5118-5122. [67] Thompson, J.D., Gibson, T.J., Higgins, D.G., 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics. 1, 2-3. [68] Wang, Y., Tang, H., Debarry, J.D., et al., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49. [69] Wu, J., Wang, Z., Shi, Z., et al., 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 23, 396-408. [70] Xue, Y., Carpenter, R., Dickinson, H.G., et al., 1996. Origin of allelic diversity in antirrhinum S locus RNases. Plant Cell. 8, 805-814. [71] Ye, M., Peng, Z., Tang, D., et al., 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants. 4, 651-654. [72] Zhang, J., Lei, Y., Wang, B., et al., 2020. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnol. J. 18, 1908-1924. [73] Zhu, X., Li, Q., Tang, C., et al., 2020. Comprehensive genomic analysis of the RNase T2 gene family in Rosaceae and expression analysis in Pyrus bretschneideri. Plant Syst. Evol. 306, 1-17. |