Plant Diversity ›› 2023, Vol. 45 ›› Issue (05): 590-600.DOI: 10.1016/j.pld.2023.02.001
• Articles • Previous Articles Next Articles
Xien Wua, Dengli Luoa, Yingmin Zhanga, Ling Jina, M. James C. Crabbeb,c,d, Qin Qiaoe, Guodong Lia, Ticao Zhanga
Received:
2022-11-17
Revised:
2023-01-16
Online:
2023-09-25
Published:
2023-11-04
Contact:
Guodong Li,E-mail:gammar116@163.com;Ticao Zhang,E-mail:zhangticao@mail.kib.ac.cn
Supported by:
Xien Wu, Dengli Luo, Yingmin Zhang, Ling Jin, M. James C. Crabbe, Qin Qiao, Guodong Li, Ticao Zhang. Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis)[J]. Plant Diversity, 2023, 45(05): 590-600.
Add to citation manager EndNote|Ris|BibTeX
[1] Alirezalu, A., Ahmadi, N., Salehi, P., et al., 2020. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods. 9, 436. https://doi.org/10.3390/foods9040436. [2] Bachmann, M. and Keller, F., 1995. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. (Inter- and Intracellular Compartmentation). Plant Physiol. 109, 991-998. https://doi.org/10.1104/pp.109.3.991. [3] Barrett, D., Beaulieu, J. and Shewfelt, R., 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 50, 369-389. https://doi.org/10.1080/10408391003626322. [4] Beauchamp, G., 2016. Why do we like sweet taste: A bitter tale? Physiol. Behav. 164, 432-437. https://doi.org/10.1016/j.physbeh.2016.05.007. [5] Chen, Z., Jiang, J., Shu, L., et al., 2021. Combined transcriptomic and metabolic analyses reveal potential mechanism for fruit development and quality control of Chinese raspberry (Rubus chingii Hu). Plant Cell Rep. 40, 1923-1946. https://doi.org/10.1007/s00299-021-02758-6. [6] Commission, C.P., 2020. Pharmacopoeia of the People's Republic of China. Beijing: The medicine science and technology press of China. [7] Dong, N. and Lin, H., 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 63, 180-209. https://doi.org/10.1111/jipb.13054. [8] Drewnowski, A., 2001. The science and complexity of bitter taste. Nutr. Rev. 59, 163-169. https://doi.org/10.1111/j.1753-4887.2001.tb07007.x. [9] Du, X., Zhang, X., Bu, H., et al., 2019. Molecular analysis of evolution and origins of cultivated hawthorn (Crataegus spp.) and related species in China. Front. Plant Sci. 10, 443. https://doi.org/10.3389/fpls.2019.00443. [10] El Hadi, M., Zhang, F., Wu, F., et al., 2013. Advances in fruit aroma volatile research. Molecules. 18, 8200-8229. https://doi.org/10.3390/molecules18078200. [11] Gil, L., Ben-Ari, J., Turgeon, R., et al., 2012. Effect of CMV infection and high temperatures on the enzymes involved in raffinose family oligosaccharide biosynthesis in melon plants. J. Plant Physiol. 169, 965-970. https://doi.org/10.1016/j.jplph.2012.02.019. [12] Gong, C., Diao, W., Zhu, H., et al., 2021. Metabolome and transcriptome integration reveals insights into flavor formation of 'Crimson' watermelon flesh during fruit development. Front. Plant Sci. 12, 629361. https://doi.org/10.3389/fpls.2021.629361. [13] Gu, C. and Spongberg, S.A., 2003. Crataegus Linnaeus. In: Wu ZY, Raven PH, and Hong DY, eds. Flora of China. 9 (Pittosporaceae through connaraceae), Beijing: Science Press, 111-117. [14] Gundogdu, M., Ozrenk, K., Ercisli, S., et al., 2014. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 47, 21. https://doi.org/10.1186/0717-6287-47-21. [15] Hannah, M., Zuther, E., Buchel, K., et al., 2006. Transport and metabolism of raffinose family oligosaccharides in transgenic potato. J. Exp. Bot. 57, 3801-3811. https://doi.org/10.1093/jxb/erl152. [16] Harborne, J.B. and Williams, C.A., 2000. Advances in flavonoid research since 1992. Phytochemistry. 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1. [17] Hu, G., Wang, Y., Wang, Y., et al., 2021. New insight into the phylogeny and taxonomy of cultivated and related species of Crataegus in China, based on complete chloroplast genome sequencing. Horticulturae. 7, 301. https://doi.org/10.3390/horticulturae7090301. [18] Huerta-Cepas, J., Szklarczyk, D., Heller, D., et al., 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309-D314. https://doi.org/10.1093/nar/gky1085. [19] Hui, W., Zhao, F., Wang, J., et al., 2020. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism. BMC Genomics. 21, 81. https://doi.org/10.1186/s12864-020-6521-4. [20] Igamberdiev, A. and Eprintsev, A., 2016. Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front. Plant Sci. 7, 1042. https://doi.org/10.3389/fpls.2016.01042. [21] Kannan, U., Sharma, R., Gangola, M., et al., 2021. Sequential expression of raffinose synthase and stachyose synthase corresponds to successive accumulation of raffinose, stachyose and verbascose in developing seeds of Lens culinaris Medik. J. Plant Physiol. 265, 153494. https://doi.org/10.1016/j.jplph.2021.153494. [22] Khan, J., Deb, P., Priya, S., et al., 2021. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules. 26, 4021. https://doi.org/10.3390/molecules26134021. [23] Kim, D., Paggi, J., Park, C., et al., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915. https://doi.org/10.1038/s41587-019-0201-4. [24] Kiyama, R., 2017. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur. J. Pharmacol. 405-415. https://doi.org/10.1016/j.ejphar.2017.09.049. [25] Lehle, L. and Tanner, W., 1973. The function of myo-inositol in the biosynthesis of raffinose. Purification and characterization of galactinol:sucrose 6-galactosyltransferase from Vicia faba seeds. Eur. J. Biochem. 38, 103-110. https://doi.org/10.1111/j.1432-1033.1973.tb03039.x. [26] Liu, S., Grierson, D. and Xi, W., 2022. Biosynthesis, distribution, nutritional and organoleptic properties of bitter compounds in fruit and vegetables. Crit Rev Food Sci Nutr. 1-20. https://doi.org/10.1080/10408398.2022.2119930. [27] Liu, W., Feng, Y., Yu, S., et al., 2021. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 22, 12824. https://doi.org/10.3390/ijms222312824. [28] Love, M., Huber, W. and Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8. [29] Lund, J., Brown, P. and Shipley, P., 2020. Quantification of north American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia. 143, 104537. https://doi.org/10.1016/j.fitote.2020.104537. [30] Mierziak, J., Kostyn, K. and Kulma, A., 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules. 19, 16240-16265. https://doi.org/10.3390/molecules191016240. [31] Nabavi, S., Samec, D., Tomczyk, M., et al., 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005. [32] Oliveira, A., de Oliveira E Silva, A., Pereira, R., et al., 2022. Anti-obesity properties and mechanism of action of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 62, 7827-7848. https://doi.org/10.1080/10408398.2021.1919051. [33] Orhan, I., 2018. Phytochemical and pharmacological activity profile of Crataegus oxyacantha L. (hawthorn) - A cardiotonic herb. Curr. Med. Chem. 25, 4854-4865. https://doi.org/10.2174/0929867323666160919095519. [34] Patrick, J., Botha, F. and Birch, R., 2013. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol. J. 11, 142-156. https://doi.org/10.1111/pbi.12002. [35] Peng, L., Gao, W., Song, M., et al., 2022. Integrated metabolome and transcriptome analysis of fruit flavor and carotenoids biosynthesis differences between Mature-Green and Tree-Ripe of cv. “Golden Phoenix” mangoes (Mangifera indica L.). Front. Plant Sci. 13, 816492. https://doi.org/10.3389/fpls.2022.816492. [36] Peterbauer, T., Mucha, J., Mayer, U., et al., 1999. Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase. Plant J. 20, 509-518. https://doi.org/10.1046/j.1365-313x.1999.00618.x. [37] Peterbauer, T. and Richter, A., 1998. Galactosylononitol and stachyose synthesis in seeds of adzuki bean. Purification and characterization of stachyose synthase. Plant Physiol. 117, 165-172. https://doi.org/10.1104/pp.117.1.165. [38] Phipps, J.B., Robertson, K.R., Smith, P.G., et al., 1990. A checklist of the subfamily Maloideae (Rosaceae). Can. J. Bot. 68, 2209-2269. https://doi.org/10.1139/b90-288. [39] Pichersky, E. and Raguso, R., 2018. Why do plants produce so many terpenoid compounds? New Phytol. 220, 692-702. https://doi.org/10.1111/nph.14178. [40] Pollock, C.J., Lloyd, E.J., Stoddart, J.L., et al., 2010. Growth, photosynthesis and assimilate partitioning in Lolium temulentum exposed to chilling temperatures. Physiol Plant. 59, 257-262. https://doi.org/10.1111/j.1399-3054.1983.tb00768.x. [41] Robyt, J. and Ackerman, R., 1971. Isolation, purification, and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145, 105-114. https://doi.org/10.1016/0003-9861(71)90015-4. [42] Routaboul, J., Kerhoas, L., Debeaujon, I., et al., 2006. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta. 224, 96-107. https://doi.org/10.1007/s00425-005-0197-5. [43] Sengupta, S., Mukherjee, S., Basak, P., et al., 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6, 656. https://doi.org/10.3389/fpls.2015.00656. [44] Terol, J., Soler, G., Talon, M., et al., 2010. The aconitate hydratase family from Citrus. BMC Plant Biol. 10, 222. https://doi.org/10.1186/1471-2229-10-222. [45] Treutter, D., 2006. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 7, 581-591. https://doi.org/10.1055/s-2005-873009. [46] Wang, L., Wang, S. and Li, W., 2012. RSeQC: Quality control of RNA-seq experiments. Bioinformatics. 28, 2184-2185. https://doi.org/10.1093/bioinformatics/bts356. [47] Wang, R., Shu, P., Zhang, C., et al., 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol. 233, 373-389. https://doi.org/10.1111/nph.17618. [48] Wu, Y., Zhang, C., Huang, Z., et al., 2022. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res. Int. 153, 110948. https://doi.org/10.1016/j.foodres.2022.110948. [49] Xu, Y., Zhu, C., Xu, C., et al., 2019. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules. 24, 2564. https://doi.org/10.3390/molecules24142564. [50] Zhang, J., Chai, X., Zhao, F., et al., 2022. Food applications and potential health benefits of hawthorn. Foods. 11, 2861. https://doi.org/10.3390/foods11182861. [51] Zhang, T., Qiao, Q., Du, X., et al., 2022. Cultivated hawthorn (Crataegus pinnatifida var. major) genome sheds light on the evolution of Maleae (apple tribe). J. Integr. Plant Biol. 64, 1487-1501. https://doi.org/10.1111/jipb.13318. [52] Zhang, T., Sun, M., Guo, Y., et al., 2018. Overexpression of LiDXS and LiDXR from lily (Lilium ‘Siberia’) enhances the terpenoid content in tobacco flowers. Front. Plant Sci. 9, 909. https://doi.org/10.3389/fpls.2018.00909. [53] Zhang, X., Wang, J., Li, P., et al., 2023. Integrative metabolome and transcriptome analyses reveals the black fruit coloring mechanism of Crataegus maximowiczii C. K. Schneid. Plant physiology and biochemistry : PPB. 194, 111-121. https://doi.org/10.1016/j.plaphy.2022.11.008. [54] Zhu, C.H., Zhou, X.Y., Li, J.X., et al., 2018. Determination of limonin and flavonoids in the lemon fruit at different development stages. Xiandai Shipin Keji. 34, 246-251. https://doi.org/10.13982/j.mfst.1673-9078.2018.2.038. |
[1] | LI Heng-, PU Jian-Xin-, LI Jie. Diterpenoids Chemodiversity of the Genus Isodon Spach from Lamiaceae [J]. Plant Diversity, 2013, 35(1): 81-88. |
[2] | KONG Xiang-He, WEI Shuo-Nan. The Anatomical Structure and Histological Localizations of Effective Components in Scutellaria amoena (Lamiaceae) [J]. Plant Diversity, 2011, 33(4): 414-422. |
[3] | YANG Ying, ZHENG Hui , HE Feng, JI Jia-Xing, YU Long-Jiang. The Effects of Methyl Jasmonate on the Flavonoids Synthesis in Cell Suspension Culture of Glycyrrhiza inflata (Leguminosae) [J]. Plant Diversity, 2008, 30(05): 586-592. |
[4] | WANG Qiong , JU Peng, WANG Yi-Fen, LUO Shi-De. Triterpenoids from Saurauia napaulensis (Saurauiaceae) [J]. Plant Diversity, 2008, 30(01): 121-124. |
[5] |
LAI Guo-Fang , , ZHAO Pei-Ji , NI Zhi-Wei , XU Yun-Long , WANG Mei , LUO Shi-De , WANG Yi-Fen. A New Fructofuranoside from Helwingia chinensis (Cornaceae) [J]. Plant Diversity, 2008, 30(01): 115-120. |
[6] | YANG Ying, HE Feng , YU Long-Jiang, CHEN Xue-Hong, LEI Jing, JI Jia-Xing, FU Chun-Hua. Production of Flavonoids in Cell Suspension Culture of Glycyrrhiza inflata (Leguminosae) [J]. Plant Diversity, 2007, 29(04): 444-446. |
[7] | LI Xian , , LI Sheng-Hong , PU Jian-Xin , HUANG Sheng-Xiong , SUN Han-Dong *. Chemical Constituents from Paeonia anomala subsp. veitchii (Paeoniaceae) [J]. Plant Diversity, 2007, 29(02): 259-262. |
[8] | WANG Yue-Hu; ZHANG Zhong-Kai; HE Hong-Ping; GAO Suo; KONG Ning-Chuan; DING Ming; HAO Xiao-Jiang. Lignans and Triterpenoids from Cissus repens (Vitaceae) [J]. Plant Diversity, 2006, 28(04): 433-437. |
[9] | WANG Qiong,SU ZhiXian. Changes of Total Flavonoids Content at the Module and Ramet Levels in Neosinocalamus affinis [J]. Plant Diversity, 2004, 26(01): 1-3. |
[10] | ZHAO Ai-Hua ZHAO Qin-Shi PENG Li-Yan ZHANG Ji-Xia LIN Zhong-Wen SUN Han-Dong. A New Chalcone Glycoside from Bidens pilosa [J]. Plant Diversity, 2003, 25(05): 1-3. |
[11] | ZHAO Ai-Hua, PENG Li-Yan , WANG Zong-Yu , SUN Han-Dong. An lonone Derivative from Isodon leucophyllus [J]. Plant Diversity, 2003, 25(04): 1-3. |
[12] | JIAG Bei,HAN Quan-Bin,XIANG Wei,LIN Zhong-Wen, SUN Han Dong*. Triterpenoids from lsodon adenanthus [J]. Plant Diversity, 2002, 24(05): 1-3. |
[13] | CHENG Yong-Xian, LEI Mao-Lin, ZHOU Jun. Sesquiterpenoids from Michelia lacei and Their Chemotaxonomic Significance [J]. Plant Diversity, 2002, 24(01): 1-3. |
[14] | NA ZhI, XIANG Wei, LI Chao-Ming, LIN Zhong-Wen, SUN Han-Dong. Flavonoids from Isodon enanderianus [J]. Plant Diversity, 2002, 24(01): 1-3. |
[15] | LU Dong - Ping ZHAO De - Xiu HUANG Yan ZHAO Qiao. The Effect of Precursor Feeding on Flavonoids Biosynthesis in Cell Suspension Cultures of Saussurea medusa [J]. Plant Diversity, 2001, 23(04): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||