Plant Diversity ›› 2023, Vol. 45 ›› Issue (06): 722-731.DOI: 10.1016/j.pld.2023.01.007
• Articles • Previous Articles Next Articles
Anna A. Betekhtinaa, Daria E. Tukovaa, Denis V. Veselkinb
Received:
2022-07-30
Revised:
2023-01-24
Online:
2023-11-25
Published:
2023-12-28
Contact:
Anna A. Betekhtina,E-mail:betechtina@mail.ru
Supported by:
Anna A. Betekhtina, Daria E. Tukova, Denis V. Veselkin. Root structure syndromes of four families of monocots in the Middle Urals[J]. Plant Diversity, 2023, 45(06): 722-731.
Add to citation manager EndNote|Ris|BibTeX
[1] Akhmetzhanova, A.A., Soudzilovskaia, N.A., Onipchenko, V.G., et al., 2012. A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology 93, 689-690. https://doi.org/10.1890/11-1749.1. [2] Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x. [3] Bakhari, M.H., Wendelbo, P., 1978. On anatomy, adaptations to xerophytism and taxanomy of Anabasis inclusive Esfandiaria (Chenopodiaceae). Bot. Not. 131, 279-292. [4] Baylis, G.T.S., 1975. Magnolioid mycorrhiza and mycotrophy in root systems derived from it. In Endomycorrhizas; Proceedings of a Symposium. [5] Bergmann, J., Weigelt, A., Van der Plas, F., et al., 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756. https://doi.org/10.1126/sciadv.aba3756. [6] Betekhtina, A.A., Veselkin, D.V., 2014. Relationship between root structure of herbaceous dicotyledonous plants and their mycorrhizal status. Dokl. Biol. Sci. 459, 348-350. https://doi.org/10.1134/S0012496614060064. [7] Betekhtina, A.A., Veselkin, D.V., 2019. Mycorrhizal and non-mycorrhizal dicotyledonous herbaceous plants differ in root anatomy: evidence from the Middle Urals, Russia. Symbiosis 77, 133-140. https://doi.org/10.1007/s13199-018-0571-2. [8] Bouda, M., Brodersen, C., Saiers, J., 2018. Whole root system water conductance responds to both axial and radial traits and network topology over natural range of trait variation. J. Theor. Biol. 456, 49-61. https://doi.org/10.1016/j.jtbi.2018.07.033. [9] Brundert М., 1991. Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 21, 171-313. https://doi.org/10.1016/S0065-2504(08)60099-9. [10] Chen, W., Zeng, H., Eissenstat, D.M., Guo, D., 2013. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecol. Biogeogr. 22, 846-856. https://doi.org/10.1111/geb.12048. [11] Chytry, M., Tichy, L., Hennekens, S.M., et al., 2020. EUNIS Habitat Classification: expert system, characteristic species com-binations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648-675. https://doi.org/10.1111/avsc.12519. [12] Comas, L.H., Callahan, H.S., Midford, P.E., 2014. Patterns in root traits of woody species host-ing arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecol. Evol. 4, 2979-2990. https://doi.org/10.1002/ece3.1147. [13] Comas, L.H., Eissenstat, D.M., 2009. Patterns in root trait variation among 25 co-existing North American forest species. New Phytol. 182, 919-928. https://doi.org/10.1111/j.1469-8137.2009.02799.x. [14] Comas, L.H., Mueller, K.E., Taylor, L.L., et al., 2012. Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int. J. Plant Sci. 173, 584-595. https://doi.org/10.1086/665823. [15] Cronquist, A., 1988. The Evolution and Classification of Flowering Plants. The New York Botanical Garden, Bronx. [16] Davison, J., Opik, M., Daniell, T.J., et al., 2011. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol. Ecol. 78, 103-115. https://doi.org/10.1111/j.1574-6941.2011.01103.x. [17] Dearnaley, J.D., Cameron, D.D., 2017. Nitrogen transport in the orchid mycorrhizal symbiosis - further evidence for a mutualistic association. New Phytol. 213, 10-12. https://doi.org/10.1111/nph.14357. [18] Ehmig, M., Linder, H.P., 2020. Unexpected diversity and evolutionary lability in root architectural ecomorphs in the rushes of the hyperdiverse Cape flora. New Phytol. 227, 216-231. https://doi.org/10.1111/nph.16522. [19] Eissenstat, D.M., 1992. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15, 763-782. https://doi.org/10.1080/01904169209364361. [20] Eissenstat, D.M., Wells, C.E., Yanai, R.D., et al., 2000. Building roots in a changing environment: implications for root longevity. New Phytol. 147, 33-42. https://doi.org/10.1046/j.1469-8137.2000.00686.x. [21] Esau, K., 1969. Plant Anatomy. Moscow: Publishing House. Mir. [22] Fay, M.F., Chase, M.W., 2009. Orchid biology: from Linnaeus via Darwin to the 21st century. Ann. Bot. 104, 359-364. https://doi.org/10.1093/aob/mcp190. [23] Fitter, A.H., 1987. An architectural approach to the comparative ecology of plant root systems. New Phytol. 106, 61-77. https://doi.org/10.1111/j.1469-8137.1987.tb04683.x. [24] Fort, F., Jouany, C., Cruz, P., 2013. Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies. J. Plant Ecol. 6, 211-219. https://doi.org/10.1093/jpe/rts034. [25] Freschet, G.T., Roumet, C., Comas, L.H., et al., 2021. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. 232, 1123-1158. https://doi.org/10.1111/nph.17072. [26] Gamaley, YuV., 2004. Transport System of Vascular Plants. St. Petersburg: St. Petersburg Uni-versity Publishing House. 422. [27] Givnish, T.J., Zuluaga, A., Spalink, D., et al., 2018. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. Am. J. Bot. 105, 1888-1910. https://doi.org/10.1002/ajb2.1178. [28] Hagsater, E., Soto, M.A., Salazar, G.A., et al., 2005. The Orchids of Mexico. Mexico City: Redacta. [29] Harrington, T.J., Mitchell, D.T., 2002. Colonization of root systems of Carex flacca and C. pilu-lifera by Cortinarius (Dermocybe) cinnamomeus. Mycol. Res. 106, 452-459. https://doi.org/10.1017/S0953756202005713. [30] Hetrick, B.A.D., 1991. Mycorrhizas and root architecture. Experientia 47, 355-362. https://doi.org/10.1007/BF01972077. [31] Hew, C.S., Yong, J.W.H., 2004. The Physiology of Tropical Orchids in Relation to the Industry (second ed.). World Scientific Publishing Co., Pte. Ltd. 388. [32] Jernstedt, J.A., 1984. Root contraction in hyacinth. I. Effects of IAA on differential cell expansion. Am. J. Bot. 71, 1080-1089. https://doi.org/10.1002/j.1537-2197.1984.tb11960.x. [33] John St, T.V., 1980. Root size, root hairs and mycorrhizal infection: a re-examination of Baylis's hypothesis with tropical trees. New Phytol. 84, 483-487. https://doi.org/10.1111/j.1469-8137.1980.tb04555.x. [34] Kauff, F., Rudall, P.J., Conran, J.G., 2000. Systematic root anatomy of Asparagales and other monocotyledons. Plant Systemat. Evol. 223, 139-154. https://doi.org/10.1007/BF00985275. [35] Kiers, E.T., Duhamel, M., Beesetty, Y., et al., 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880-882. https://doi.org/10.1126/science.1208473. [36] Kiers, E.T., Heijden, M.G.A., 2006. Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87, 1627-1636. https://doi.org/10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2. [37] Kong, D., Ma, C., Zhang, Q., et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863-872. https://doi.org/10.1111/nph.12842. [38] Kong, D., Wang, J., Wu, H., et al., 2019. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 1-9. https://doi.org/10.1038/s41467-019-10245-6. [39] Konoplenko, M.A., Gusewell, S., Veselkin, D.V., 2017. Taxonomic and ecological patterns in root traits of Carex (Cyperaceae). Plant Soil 420, 37-48. https://doi.org/10.1007/s11104-017-3292-z. [40] Kutschera, L., Lichtenegger, E., 1982. Wurzelatlas Mitteleuropaischer Grunlandpflanzen (Root Compendium of Central European Grassland Vegetation. Gustav Fischer Verlag Stuttgart, Germany. 516. [41] Lambers, H., Raven, J.A., Shaver, G.R., et al., 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95-103. https://doi.org/10.1016/j.tree.2007.10.008. [42] Lynch, J.P., 2015. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ 38, 1775–1784. https://doi.org/10.1111/pce.12451. [43] Ma, Z., Guo, D., Xu, X., et al., 2018. Evolutionary history resolves global organization of root functional traits. Nature 555, 94-97. https://doi.org/10.1038/nature25783. [44] Markmann, K., Giczey, G., Parniske, M., 2008. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol. 6, e68. https://doi.org/10.1371/journal.pbio.0060068. [45] McCormack, M.L., Iversen, C.M., 2019. Physical and functional constraints on viable below-ground acquisition strategies. Front. Plant Sci. 1215. https://doi.org/10.3389/fpls.2019.01215. [46] McGonigle, T.P., Miller, M.H., Evans, D.G., et al., 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x. [47] McKenzie, B.E., Peterson, C.A., 1995. Root browning in Pinus banksiana Lamb. and Eucalyptus pilularis Sm. 2. Anatomy and permeability of the cork zone. Bot. Acta 108, 138-143. https://doi.org/10.1111/j.1438-8677.1995.tb00843.x. [48] Merckx, V.S., 2013. Mycoheterotrophy: the Biology of Plants Living on Fungi. Springer, New York. [49] Miller, R.M., Smith, C.I., Jastrow, J.D., et al., 1999. Mycorrhizal status of the genus Carex (Cyperaceae). Am. Jails 86, 547-553. https://doi.org/10.2307/2656816. [50] Muthukumar, T., Udaiyan, K., Shanmughavel, P., 2004. Mycorrhiza in sedges - an overview. Mycorrhiza 14, 65-77. https://doi.org/10.1007/s00572-004-0296-3. [51] North, G.B., Brinton, E.K., Garrett, T.Y., 2008. Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall. Plant Cell Environ. 31, 1179-1189. https://doi.org/10.1111/j.1365-3040.2008.01832.x. [52] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2020. Vegan: Community Ecology Package. v. 2.5-7. URL: cran.r-project.org/package=vegan. [53] Pregitzer, K.S., DeForest, J.L., Burton, A.J., et al., 2002. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293-309. https://doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2. [54] R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/. [55] Reich, P.B., 2014. The world-wide ‘fast-slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301. [56] Rodionenko, G.I., 1961. Genus Iris-Iris L.: questions of morphology, biology, evolution and taxonomy. Izd. Akad. Science SSSR. [57] Ruzin, S.E., 1979. Root contraction in freesia (Iridaceae). Am. J. Bot. 66, 522-531. https://doi.org/10.1002/j.1537-2197.1979.tb06254.x. [58] Ryser, P., 2006. The mysterious root length. Plant Soil 286, 1-6. https://doi.org/10.1007/s11104-006-9096-1. [59] Salazar, G.A., Chase, M.W., Soto Arenas, M.A., et al., 2003. Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Am. J. Bot. 90, 777-795. https://doi.org/10.3732/ajb.90.5.777. [60] Selivanov, I.A., 1981 Mycosymbiotrophism as a form of consortium relationships in plant cover of soviet union. Min. Sci. vol. 232. [61] Shane, M.W., Cawthray, G.R., Cramer, M.D., et al., 2006. Specialized 《dauciform》 roots of Cyperaceae are structurally distinct, but functionally analogous with 《cluster》 roots. Plant Cell Environ. 29, 1989-1999. https://doi.org/10.1111/j.1365-3040.2006.01574.x. [62] Smith, S.E., Read, D.J., 2010. Mycorrhizal Symbiosis, third ed. Academic Press, New York. [63] Takhtadzhyan, A.L., 1966. System and Phylogeny of Flowering Plants. Nauka. Moscow/Leningrad. 611. [64] Valverde-Barrantes, O.J., Smemo, K.A., Blackwood, C.B., 2015. Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Funct. Ecol. 29, 796-807. https://doi.org/10.1111/1365-2435.12384. [65] Veselkin, D.V., Betekhtina, A.A., 2013. Testing hypotheses about difference in root sizes in connection with type of ecological strategy and mycotrophic status of plant species. Bull. MOIP. Dep. Biol. 118, 42-49. [66] Veselkin, D.V., Konoplenko, M.A., Betekhtina, A.A., 2014. Means for soil nutrient uptake in sedges with different ecological strategies. Russ. J. Ecol. 45, 547-554. https://doi.org/10.1134/S1067413614060149. [67] Visser, E.J.W., Bogemann, G.M., Van de Steeg, H.M., et al., 2000. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. New Phytol. 148, 93-103. https://doi.org/10.1046/j.1469-8137.2000.00742.x. [68] Wahl, S., Ryser, P., 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytol. 148, 459-471. https://doi.org/10.1046/j.1469-8137.2000.00775.x. [69] Wang, Y., He, X., Yu, F. 2022. Non-host plants: are they mycorrhizal networks players? Plant Divers. 44, 127-134. [70] Waterman, R.J., Bidartondo, M.I., 2008. Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 59, 1085-1096. https://doi.org/10.1093/jxb/erm366. [71] Weemstra, M., Mommer, L., Visser, E.J., et al., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159-1169. [72] Weishampel, P.A., Bedford, B.L., 2006. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16, 495-502. https://doi.org/10.1007/s00572-006-0064-7. [73] Yudina, P.K., Ivanov, L.A., Ronzhina, D.A., et al., 2020. Effect of systematic position at family level on functional traits of steppe leaves plants. Sib. Ecol. J. 5, 647-661. https://doi.org/10.15372/SEJ20200508. [74] Zhou, M., Bai, W., Li, Q., et al., 2021. Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytol. 229, 1481-1491. https://doi.org/10.1111/nph.16797. |
[1] | Irina A. Kirillova, Yuriy A. Dubrovskiy, Svetlana V. Degteva, Alexander B. Novakovskiy. Ecological and habitat ranges of orchids in the northernmost regions of their distribution areas: A case study from Ural Mountains, Russia [J]. Plant Diversity, 2023, 45(02): 211-218. |
[2] | Hanqing Tang, Lu Tang, Shicheng Shao, Yulan Peng, Lu Li, Yan Luo. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Orchidaceae, Epidendroideae, Malaxideae): Insights into species divergence and adaptive evolution [J]. Plant Diversity, 2021, 43(05): 350-361. |
[3] | Jian-Wu Li, Ji-Dong Ya, De-Ping Ye, Cheng Liu, Qiang Liu, Rui Pan, Zai-Xing He, Bo Pan, Jie Cai, Dong-Liang Lin, Xiao-Hua Jin. Taxonomy notes on Vandeae (Orchidaceae) from China: Five new species and two new records [J]. Plant Diversity, 2021, 43(05): 379-389. |
[4] | Dong-Liang Lin, Ji-Dong Ya, André Schuiteman, Chong-Bo Ma, Cheng Liu, Xue-Lian Guo, Shi-Si Chen, Xi-Long Wang, Zhi-Rong Zhang, Wen-Bin Yu, Xiao-Hua Jin. Four new species and a new record of Orchidinae (Orchidaceae: Orchideae) from China [J]. Plant Diversity, 2021, 43(05): 390-400. |
[5] | Ji-Dong Ya, Dong-Liang Lin, Zhou-Dong Han, Lei Cai, Zhi-Rong Zhang, De-Ming He, Xiao-Hua Jin, Wen-Bin Yu. Three new species of Liparis s.l. (Orchidaceae: Malaxideae) from Southwest China based on morphological characters and phylogenetic evidence [J]. Plant Diversity, 2021, 43(05): 401-408. |
[6] | Qiang Liu, Ji-Dong Ya, Xun-Feng Wu, Bing-Yi Shao, Kuan-Bo Chi, Hai-Lei Zheng, Jian-Wu Li, Xiao-Hua Jin. New taxa of tribe Gastrodieae (Epidendroideae, Orchidaceae) from Yunnan, China and its conservation implication [J]. Plant Diversity, 2021, 43(05): 420-425. |
[7] | Bing-Hua Chen, Xiao-Hua Jin. Neottia wuyishanensis (Orchidaceae: Neottieae), a new species from Fujian, China [J]. Plant Diversity, 2021, 43(05): 426-431. |
[8] | PANG Li-Li, LI Yu-Shuang, CHEN Jie, SUN Jian-Yun, WANG Qing-Ya. The Distribution Characteristics and Application of Cyperaceae Plant Resources in Jiangsu Province [J]. Plant Diversity, 2015, 37(05): 616-628. |
[9] | LI Jian-Wu, YIE De-Ping, LIU Jing-Xin, TAN Yun-Hong, YIN Jian-Tao. Orchids Newly Recorded to China [J]. Plant Diversity, 2015, 37(03): 246-252. |
[10] | LIN Ling-, HONG Shu-Li-, TU Yan-Li-, LUO Jian. Floristic Characteristics and Species Diversity of the Orchidaceae on Shergyla Mountain, Southeast Xizang, China [J]. Plant Diversity, 2013, 35(3): 335-342. |
[11] | LI Jian-Wu. Two New Records of Orchid from China [J]. Plant Diversity, 2013, 35(2): 128-130. |
[12] | LI Jian-Wu, DAO Guo-Da, LIU Qiang. Lesliea, a Newly Recorded Genus of Orchidaceae from China [J]. Plant Diversity, 2011, 33(6): 643-644. |
[13] | JIN Xiao-Hua-, DAI Zheng-Quan-, LIU Qing-Yi-, JU Hua-Yong. Miscellaneous Taxonomic Notes on Orchidaceae from China [J]. Plant Diversity, 2010, 32(4): 334-338. |
[14] | SONG Xi-Qiang , , MENG Qian-Wan , Luo Yi-Bo. New Records of Orchids from Hainan, China (Ⅱ) [J]. Plant Diversity, 2009, 31(1): 32-34. |
[15] | MO Rao , LENG Qing-Yun , , HUANG Ming-Zhong , PEN Bin, TANG Yan-Qiong , LUO Yuan-Hua , DENG Xiao-Guo. A Karyological Study of Fourteen Species in Eleven Genera of the Orchidaceae [J]. Plant Diversity, 2009, 31(06): 504-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||