Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 256-264.DOI: 10.1016/j.pld.2023.04.003
• Articles • Previous Articles Next Articles
Xu Chena,b, Haining Lua,b, Zhengru Rena,b, Yuqiu Zhanga,b, Ruoxuan Liua,b, Yunhai Zhanga,b, Xingguo Hana,b
Received:
2023-01-19
Revised:
2023-04-19
Online:
2024-03-25
Published:
2024-04-07
Contact:
Yunhai Zhang,E-mail:zhangyh670@ibcas.ac.cn
Supported by:
Xu Chen, Haining Lu, Zhengru Ren, Yuqiu Zhang, Ruoxuan Liu, Yunhai Zhang, Xingguo Han. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland[J]. Plant Diversity, 2024, 46(02): 256-264.
Add to citation manager EndNote|Ris|BibTeX
[1] Bai, Y. F., Han, X. G., Wu, J. G., et al., 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431(7005), 181-184. https://doi.org/10.1038/nature02850. [2] Barreto, R. F., de Mello Prado, R., Lucio, J. C. B., et al., 2022. Ammonium toxicity alleviation by silicon is dependent on cytokinins in tomato cv. Micro-Tom. J. Plant Growth Regul. 41(1), 417-428. https://doi.org/10.1007/s00344-021-10314-5. [3] Barrett, S.C.H., 2015. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. U. S. A 112(29), 8859-8866. https://doi.org/10.1073/pnas.1501712112. [4] Bethers, S., Day, M. E., Bruce Wiersma, G., et al., 2009. Effects of chronically elevated nitrogen and sulfur deposition on sugar maple saplings:nutrition, growth and physiology. For. Ecol. Manage. 258(5), 895-902. https://doi.org/10.1016/j.foreco.2009.03.024. [5] Bharath, S., Borer, E. T., Biederman, L. A., et al., 2020. Nutrient addition increases grassland sensitivity to droughts. Ecology, 101(5), e02981. https://doi.org/10.1002/ecy.2981. [6] Bobbink, R., Hicks, K., Galloway, J., Spranger, T., et al., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis. Ecol. Appl. 20(1), 30-59. https://doi.org/10.1890/08-1140.1. [7] Borer, E. T., Seabloom, E. W., Gruner, D. S., et al., 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508(7497), 517-520. https://doi.org/10.1038/nature13144. [8] Bowman, W. D., Cleveland, C. C., Halada, L.,et al., 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 1(11), 767-770. https://doi.org/10.1038/ngeo339. [9] Bowman, W. D., Ayyad, A., Bueno de Mesquita, C. P., et al., 2018. Limited ecosystem recovery from simulated chronic nitrogen deposition. Ecol. Appl. 28(7), 1762-1772. https://doi.org/10.1002/eap.1783. [10] Canfield, D. E., Glazer, A. N., Falkowski, P. G., 2010. The evolution and future of earth's nitrogen cycle. Science. 330(6001), 192-196. https://doi.org/10.1126/science.1186120. [11] Cao, J. R., Pang, S., Wang, Q. B., et al., 2020. Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Funct. Ecol. 34(3), 723-734. https://doi.org/10.1111/1365-2435.13484. [12] Chen, W., Xu, R., Hu, T., et al., 2017. Soil-mediated effects of acidification as the major driver of species loss following N enrichment in a semi-arid grassland. Plant Soil. 419(1), 541-556. https://doi.org/10.1007/s11104-017-3367-x. [13] Chu, Y., Yu, F.-H., Dong, M., 2006. Clonal plasticity in response to reciprocal patchiness of light and nutrients in the stoloniferous herb Glechoma longituba L. J. Integr. Plant Biol., 48(4), 400-408. https://doi.org/10.1111/j.1744-7909.2006.00237.x. [14] Clark, C. M., Tilman, D, 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature. 451(7179), 712-715. https://doi.org/10.1038/nature06503. [15] Clark, C. M., Cleland, E. E., Collins, S. L., et al., 2007. Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol. Lett. 10(7), 596-607. https://doi.org/10.1111/j.1461-0248.2007.01053.x. [16] Craine, J. M., Dybzinski, R., 2013. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27(4), 833-840. https://doi.org/10.1111/1365-2435.12081. [17] DeMalach, N., Zaady, E., Weiner, J., et al., 2016. Size asymmetry of resource competition and the structure of plant communities. J. Ecol. 104(4), 899-910. https://doi.org/10.1111/1365-2745.12557. [18] de Tombeur, F., Raven, J. A., Toussaint, A., et al., 2022. Why do plants silicify? Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.11.002. [19] DeMalach, N., Zaady, E., Kadmon, R., 2017. Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecol. Lett. 20(1), 60-69. https://doi.org/10.1111/ele.12706. [20] Dickson, T. L., Gross, K. L., 2013. Plant community responses to long-term fertilization:changes in functional group abundance drive changes in species richness. Oecologia, 173(4), 1513-1520. https://doi.org/10.1007/s00442-013-2722-8. [21] Dickson, T. L., Mittelbach, G. G., Reynolds, H. L.,et al., 2014. Height and clonality traits determine plant community responses to fertilization. Ecology, 95(9), 2443-2452. https://doi.org/10.1890/13-1875.1. [22] Epstein, E., 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(1), 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641. [23] Eskelinen, A., Elwood, E., Harrison, S., et al., 2021. Vulnerability of grassland seed banks to resource-enhancing global changes. Ecology. 102(12), e03512. https://doi.org/10.1002/ecy.3512. [24] Eskelinen, A., Harpole, W. S., Jessen, M.-T., et al., 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature. 611(7935), 301-305. https://doi.org/10.1038/s41586-022-05383-9. [25] Farooq, M. A., Dietz, K.-J, 2015. Silicon as versatile player in plant and human biology:overlooked and poorly understood. Front. Plant Sci. 6, 994. https://doi.org/10.3389/fpls.2015.00994. [26] Flores-Moreno, H., Fazayeli, F., Banerjee, A., et al., 2019. Robustness of trait connections across environmental gradients and growth forms. Global Ecol. Biogeogr. 28(12), 1806-1826. https://doi.org/10.1111/geb.12996. [27] Galloway, J. N., Cowling, E. B., 2021. Reflections on 200 years of nitrogen, 20 years later. Ambio 50:745-749. https://doi.org/10.1007/s13280-020-01464-z. [28] Gao, Y., Zheng, J., Lin, X., Du, F., 2020. Distribution patterns of clonal plants in the subnival belt of the Hengduan Mountains, SW China. Plant Divers. 42(5), 386-392. https://doi.org/10.1016/j.pld.2020.06.006. [29] Gough, L., Gross, K. L., Cleland, E. E., et al., 2012. Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia. 169(4), 1053-1062. https://doi.org/10.1007/s00442-012-2264-5. [30] Gross, K. L., Mittelbach, G. G., 2017. Negative effects of fertilization on grassland species richness are stronger when tall clonal species are present. Folia Geobot. 52(3), 401-409. https://doi.org/10.1007/s12224-017-9300-5. [31] Hammerli, A., Reusch, T. B. H., 2003. Inbreeding depression influences genet size distribution in a marine angiosperm. Mol. Ecol. 12(3), 619-629. https://doi.org/10.1046/j.1365-294X.2003.01766.x. [32] Hautier, Y., Niklaus, P. A., Hector, A., 2009. Competition for light causes plant biodiversity loss after eutrophication. Science. 324(5927), 636-638. https://doi.org/10.1126/science.1169640. [33] Hodgson, J. G., Montserrat Marti, G., Sera, B., et al., 2020. Seed size, number and strategies in annual plants:a comparative functional analysis and synthesis. Ann. Bot. 126(7), 1109-1128. https://doi.org/10.1093/aob/mcaa151. [34] Humbert, J.-Y., Dwyer, J. M., Andrey, A., et al., 2016. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate:a systematic review. Global Change Biol. 22(1), 110-120. https://doi.org/10.1111/gcb.12986. [35] Kleijn, D., Bekker, R. M., Bobbink, R., et al., 2008. In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands:a comparison of common and rare species. J. Appl. Ecol. 45(2), 680-687. https://doi.org/10.1111/j.1365-2664.2007.01444.x. [36] Larson, J. E., Funk, J. L., 2016. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytol. 210(3), 827-838. https://doi.org/10.1111/nph.13829. [37] Le, S., Josse, J., Husson, F., 2008. Factominer:an R package for multivariate analysis. J. Stat. Software. 25(1), 1-18. https://doi.org/10.18637/jss.v025.i01. [38] Li, Z., Wu, J., Han, Q., et al., 2021. Nitrogen and litter addition decreased sexual reproduction and increased clonal propagation in grasslands. Oecologia. 195(1), 131-144. https://doi.org/10.1007/s00442-020-04812-8. [39] Lines, E. R., Zavala, M. A., Purves, D. W., et al., 2012. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecol. Biogeogr. 21(10), 1017-1028. https://doi.org/10.1111/j.1466-8238.2011.00746.x. [40] Liu, L., Zuo, S., Ma, M., et al., 2021. Appropriate nitrogen addition regulates reproductive strategies of Leymus chinensis. Glob Ecol Conserv. 27, e01599. https://doi.org/10.1016/j.gecco.2021.e01599. [41] Loeppky, H. A., Coulman, B. E., 2001. Residue removal and nitrogen fertilization affects tiller development and flowering in meadow bromegrass. Agron. J. 93(4), 891-895. https://doi.org/10.2134/agronj2001.934891x. [42] Ma, J. F., Yamaji, N., 2015. A cooperative system of silicon transport in plants. Trends Plant Sci. 20(7), 435-442. https://doi.org/10.1016/j.tplants.2015.04.007. [43] Marteinsdottir, B., 2014. Seed rain and seed bank reveal that seed limitation strongly influences plant community assembly in grasslands. PLoS One. 9(7). https://doi.org/10.1371/journal.pone.0103352. [44] Matschonat, G., Matzner, E., 1996. Soil chemical properties affecting NH4+ sorption in forest soils. Z Pflanz Bodenkunde. 159(5), 505-511. https://doi.org/10.1002/jpln.1996.3581590514. [45] Midolo, G., Alkemade, R., Schipper, A. M., et al., 2019. Impacts of nitrogen addition on plant species richness and abundance:a global meta-analysis. Global Ecol. Biogeogr. 28(3), 398-413. https://doi.org/10.1111/geb.12856. [46] Moles, A. T., Falster, D. S., Leishman, M. R., et al., 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92(3), 384-396. https://doi.org/10.1111/j.0022-0477.2004.00880.x. [47] Muehleisen, A. J., Watkins, C. R. E., Altmire, G. R., et al., 2023. Nutrient addition drives declines in grassland species richness primarily via enhanced species loss. J. Ecol. 111(3), 552-563. https://doi.org/10.1111/1365-2745.14038. [48] O'brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quantity 41(5), 673-690. https://doi.org/10.1007/s11135-006-9018-6. [49] Pavlovic, J., Kostic, L., Bosnic, P., et al., 2021. Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci. 12, 697592. https://doi.org/10.3389/fpls.2021.697592. [50] R Core Team, 2020. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (Accessed 3 October 2022). [51] Rautiainen, P., Koivula, K., HyvArinen, M., 2004. The effect of within-genet and between-genet competition on sexual reproduction and vegetative spread in Potentilla anserina ssp. egedii. J. Ecol. 92(3), 505-511. https://doi.org/10.1111/j.0022-0477.2004.00878.x. [52] Raven, J. A., 2003. Cycling silicon-the role of accumulation in plants-Commentary. New Phytol. 158(3), 419-421. https://doi.org/10.1046/j.1469-8137.2003.00778.x. [53] Saar, L., Takkis, K., Partel, M., et al., 2012. Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers. Distrib. 18(8), 808-817. https://doi.org/10.1111/j.1472-4642.2012.00885.x. [54] Seabloom, E. W., Adler, P. B., Alberti, J., et al., 2021. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 102(2), e03218. https://doi.org/10.1002/ecy.3218. [55] Segrestin, J., Navas, M.-L., Garnier, E., 2020. Reproductive phenology as a dimension of the phenotypic space in 139 plant species from the Mediterranean. New Phytol. 225(2), 740-753. https://doi.org/10.1111/nph.16165. [56] Smith, M. D., Knapp, A. K., Collins, S. L., 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology. 90(12), 3279-3289. https://doi.org/10.1890/08-1815.1. [57] Song, M.-H., Yu, F.-H., Ouyang, H., et al., 2012. Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biol. 18(10), 3100-3111. https://doi.org/10.1111/j.1365-2486.2012.02738.x. [58] Spotswood, E. N., Mariotte, P., Farrer, E. C., et al., 2017. Separating sources of density-dependent and density-independent establishment limitation in invading species. J. Ecol. 105(2), 436-444. https://doi.org/10.1111/1365-2745.12686. [59] Stephens, S., van Kleunen, M., Dorken, M.E., 2020. Patterns of pollen dispersal and mating in a population of the clonal plant Sagittaria latifolia. J. Ecol. 108, 1941-1955. https://doi.org/10.1111/1365-2745.13399. [60] Stevens, C. J., Dise, N. B., Mountford, J. O., et al., 2004. Impact of nitrogen deposition on the species richness of grasslands. Science. 303(5665), 1876-1879. https://doi.org/10.1126/science.1094678. [61] Suding, K. N., Collins, S. L., Gough, L., et al., 2005. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad. Sci. U. S. A 102(12), 4387-4392. https://doi.org/10.1073/pnas.0408648102. [62] Tian, D., Niu, S., 2015. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10(2), 024019. https://doi.org/10.1088/1748-9326/10/2/024019. [63] Tian, Q., Liu, N., Bai, W., et al., 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology. 97(1), 65-74. https://doi.org/10.1890/15-0917.1. [64] Tian, Q., Yang, L., Ma, P., et al., 2020. Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands. J. Ecol. 108(5), 1874-1887. https://doi.org/10.1111/1365-2745.13415. [65] Tilman, D., 1993. Species richness of experimental productivity gradients:how important is colonization limitation? Ecology. 74(8), 2179-2191. https://doi.org/10.2307/1939572. [66] Tracey, A., Aarssen, L., 2019. Resident species with larger size metrics do not recruit more offspring from the soil seed bank in old-field meadow vegetation. J. Ecol. 107(3), 1067-1078. https://doi.org/10.1111/1365-2745.13089. [67] van Den Berg, L. J., Dorland, E., Vergeer, P., et al., 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol. 166(2), 551-564. https://doi.org/10.1111/j.1469-8137.2005.01338.x. [68] Virtanen, R., Eskelinen, A., Harrison, S., 2017. Comparing the responses of bryophytes and short-statured vascular plants to climate shifts and eutrophication. Funct. Ecol. 31(4), 946-954. https://doi.org/10.1111/1365-2435.12788. [69] Wang, S., van Dijk, J., Wassen, M. J.,2019. Sexual reproduction traits of Holcus lanatus L. and Parnassia palustris L. in response to absolute and relative supply of nitrogen and phosphorus. Environ. Exp. Bot. 168, 103813. https://doi.org/10.1016/j.envexpbot.2019.103813. [70] Wang, P., Alpert, P., Yu, F.-H., 2021. Physiological integration can increase competitive ability in clonal plants if competition is patchy. Oecologia, 195(1), 199-212. https://doi.org/10.1007/s00442-020-04823-5. [71] Wei, Y., Jing, X., Su, F., et al., 2022. Does pH matter for ecosystem multifunctionality? An empirical test in a semi-arid grassland on the Loess Plateau. Funct. Ecol. 36(7), 1739-1753. https://doi.org/10.1111/1365-2435.14057. [72] Weigelt, A., Mommer, L., Andraczek, K., et al., 2021. An integrated framework of plant form and function:the belowground perspective. New Phytol. 232(1), 42-59. https://doi.org/10.1111/nph.17590. [73] Wilfahrt, P. A., Asmus, A. L., Seabloom, E. W., et al., 2021. Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 102(11), e03504. https://doi.org/10.1002/ecy.3504. [74] Xiao, Y., Liu, X., Zhang, L., et al., 2021. The allometry of plant height explains species loss under nitrogen addition. Ecol. Lett. 24(3), 553-562. https://doi.org/10.1111/ele.13673. [75] Yang, Y. Y., Kim, J. G., 2016. The optimal balance between sexual and asexual reproduction in variable environments:a systematic review. J. Ecol. Environ. 40(1), 12. https://doi.org/10.1186/s41610-016-0013-0. [76] Yang, H. J., Li, Y., Wu, M., et al., 2011. Plant community responses to nitrogen addition and increased precipitation:the importance of water availability and species traits. Global Change Biol. 17(9), 2936-2944. https://doi.org/10.1111/j.1365-2486.2011.02423.x. [77] Yang, Z., Hautier, Y., Borer, E.T., Zhang, C., Du, G., 2015. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia 179, 261-270. https://doi.org/10.1007/s00442-015-3313-7. [78] Yang, X., Yang, Z., Tan, J., Li, G., et al., 2018. Nitrogen fertilization, not water addition, alters plant phylogenetic community structure in a semi-arid steppe. J. Ecol. 106(3), 991-1000. https://doi.org/10.1111/1365-2745.12893. [79] Yu, G., Jia, Y., He, N., et al., 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12(6), 424-429. https://doi.org/10.1038/s41561-019-0352-4. [80] Yue, K., Fornara, D.A., Li, W., Ni, X., Peng, Y., Liao, S., Tan, S., Wang, D., Wu, F., Yang, Y., 2020. Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe. J. Plant Ecol. 14(3), 361-371. https://doi.org/10.1093/jpe/rtaa100. [81] Zhang, Y. H., Han, X., He, N. P., et al., 2014a. Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmos. Environ. 84, 156-162. https://doi.org/10.1016/j.atmosenv.2013.11.052. [82] Zhang, Y. H., Lu, X. T., Isbell, F., et al., 2014b. Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biol. 20(11), 3520-3529. https://doi.org/10.1111/gcb.12611. [83] Zhang, Y. H., Feng, J. C., Isbell, F., et al., 2015. Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Sci. Rep. 5, 12558. https://doi.org/10.1038/srep12558. [84] Zhang, Y. H., Stevens, C. J., Lu, X. T., et al., 2016. Fewer new species colonize at low frequency N addition in a temperate grassland. Funct. Ecol. 30(7), 1247-1256. https://doi.org/10.1111/1365-2435.12585. [85] Zhang, Y. H., Loreau, M., He, N. P., et al., 2018. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia, 188(1), 183-192. https://doi.org/10.1007/s00442-018-4208-1. [86] Zhang, Y. H., Feng, J. C., Loreau, M., et al., 2019. Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecol. Lett. 22(4), 563-571. https://doi.org/10.1111/ele.13212. [87] Zhu, J., Zhang, Y., Yang, X., et al., 2020. Synergistic effects of nitrogen and CO2 enrichment on alpine grassland biomass and community structure. New Phytol. 228(4), 1283-1294. https://doi.org/10.1111/nph.16767. |
[1] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[2] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America [J]. Plant Diversity, 2023, 45(04): 369-384. |
[3] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[4] | Thant Sin Aung, Alice C. Hughes, Phyo Kay Khine, Bo Liu, Xiao-Li Shen, Ke-Ping Ma. Patterns of floristic inventory and plant collections in Myanmar [J]. Plant Diversity, 2023, 45(03): 302-308. |
[5] | Jian Zhang, Hong Qian. U.Taxonstand: An R package for standardizing scientific names of plants and animals [J]. Plant Diversity, 2023, 45(01): 1-5. |
[6] | Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China [J]. Plant Diversity, 2022, 44(05): 436-444. |
[7] | Yanliang Wang, Xinhua He, Fuqiang Yu. Non-host plants: Are they mycorrhizal networks players? [J]. Plant Diversity, 2022, 44(02): 127-134. |
[8] | Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains [J]. Plant Diversity, 2022, 44(01): 30-38. |
[9] | Atefeh Ghorbanalizadeh, Hossein Akhani. Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species [J]. Plant Diversity, 2022, 44(01): 39-69. |
[10] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation [J]. Plant Diversity, 2021, 43(03): 181-191. |
[11] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae) [J]. Plant Diversity, 2021, 43(01): 1-14. |
[12] | Jie Qian, Huifu Zhuang, Weikang Yang, Yifeng Chen, Shilong Chen, Yanhua Qu, Yuanming Zhang, Yongping Yang, Yuhua Wang. Selecting flagship species to solve a biodiversity conservation conundrum [J]. Plant Diversity, 2020, 42(06): 488-491. |
[13] | Peter Raven, Mathis Wackernagel. Maintaining biodiversity will define our long-term success [J]. Plant Diversity, 2020, 42(04): 211-220. |
[14] | Li-Shen Qian, Jia-Hui Chen, Tao Deng, Hang Sun. Plant diversity in Yunnan: Current status and future directions [J]. Plant Diversity, 2020, 42(04): 281-291. |
[15] | Mengesha Asefa, Min Cao, Yunyun He, Ewuketu Mekonnen, Xiaoyang Song, Jie Yang. Ethiopian vegetation types, climate and topography [J]. Plant Diversity, 2020, 42(04): 302-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||