Cai, L., Xi, Z., Lemmon, E.M., et al., 2021. The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade. Malpighiales. Syst. Biol. 70, 491-507. https://doi.org/10.1093/sysbio/syaa083. Cheon, S., Zhang, J., Park, C., 2020. Is phylotranscriptomics as reliable as phylogenomics? Mol. Biol. Evol. 37, 3672-3683. https://doi.org/10.1093/molbev/msaa181. Feng, C., Wang, J., Liston, A., et al., 2023. Recombination variation shapes phylogeny and introgression in wild diploid strawberries. Mol. Biol. Evol. 40, msad049. https://doi.org/10.1093/molbev/msad049. Feng, S., Ru, D., Sun, Y., et al., 2019. Trans-lineage polymorphism and nonbifurcating diversification of the genus Picea. New Phytol. 222, 576-587. https://doi.org/10.1111/nph.15590. Garg, K.M., Chattopadhyay, B., 2021. Gene flow in Volant Vertebrates: Species biology, ecology and climate change. J. Indian Inst. Sci. 101, 165-176. https://doi.org/10.1007/s41745-021-00239-z. Gernandt, D.S., Aguirre Dugua, X., Vazquez-Lobo, A., et al., 2018. Multi-locus phylogenetics, lineage sorting, and reticulation in Pinus subsection Australes. Am. J. Bot. 105, 711-725. https://doi.org/10.1002/ajb2.1052. Hibbins, M.S., Hahn, M.W., 2022. Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173. https://doi.org/10.1093/genetics/iyab173. Li, L., Abbott, R.J., Liu, B., et al., 2013. Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau. Mol. Ecol. 22, 5237-5255. https://doi.org/10.1111/mec.12466. One Thousand Plant Transcriptomes Initiative, 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685. https://doi.org/10.1038/s41586-019-1693-2. Pardo-Diaz, C., Salazar, C., Baxter, S. W., et al., 2012. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genetics 8, e1002752. https://doi.org/10.1371/journal.pgen.1002752. Pease, J.B., Haak, D.C., Hahn, M.W., et al., 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biology 14, e1002379. https://doi.org/10.1371/journal.pbio.1002379. Rivas-Gonzalez, I., Rousselle, M., Li, F., et al., 2023. Pervasive incomplete lineage sorting illuminates speciation and selection in primates. Science 380, eabn4409. https://doi.org/10.1126/science.abn4409. Ru, D., Sun, Y., Wang, D., et al., 2018. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process. Mol. Ecol. 27, 4875-4887. https://doi.org/10.1111/mec.14909. Schumer, M., Xu, C., Powell, D.L., et al., 2018. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656-660. https://doi.org/10.1126/science.aar3684. Smith, S.A., Walker-Hale, N., Walker, J.F., 2020. Intragenic conflict in phylogenomic data sets. Mol. Biol. Evol. 37, 3380-3388. https://doi.org/10.1093/molbev/msaa170. Sun, Y., Abbott, R.J., Lu, Z., et al., 2018. Reticulate evolution within a spruce (Picea) species complex revealed by population genomic analysis. Evolution 72, 2669-2681. https://doi.org/10.1111/evo.13624. Wang, D., Sun, Y., Lei, W., et al., 2023. Backcrossing to different parents produced two distinct hybrid species. Heredity 131, 145-155. https://doi.org/10.1038/s41437-023-00630-9. Wen, D., Yu, Y., Zhu, J., et al., 2018. Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67, 735-740. https://doi.org/10.1093/sysbio/syy015. |