Plant Diversity ›› 2025, Vol. 47 ›› Issue (02): 244-254.DOI: 10.1016/j.pld.2025.01.004
• Articles • Previous Articles
Yuxuan Jianga,b, Fuli Wua, Xiaomin Fanga,b, Haitao Wanga,c, Yulong Xiea,d, Cuirong Yua,b
Received:
2024-07-28
Revised:
2025-01-16
Published:
2025-04-03
Contact:
Fuli Wu,E-mail:wufuli@itpcas.ac.cn
Supported by:
Yuxuan Jiang, Fuli Wu, Xiaomin Fang, Haitao Wang, Yulong Xie, Cuirong Yu. Effective palynological diversity indices for reconstructing angiosperm diversity in China[J]. Plant Diversity, 2025, 47(02): 244-254.
Abraham, V., Rolecek, J., Vild, O., et al., 2020. Spatial scaling of pollen-based alpha and beta diversity within forest and open landscapes of Central Europe. bioRxiv. 2020-8. https://doi.org/10.1101/2020.08.18.255737. Basumatary, S., Bera, S., Sangma, S., et al., 2014. Modern pollen deposition in relation tovegetation and climate of Balpakram valley, Meghalaya, northeast India: implications for Indo-Burma palaeoecological contexts. Quat. Int. 325, 30-40. https://doi.org/10.1016/j.quaint.2013.08.013. Berger, W.H., Parker, F.L., 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science 168, 1345-1347. https://doi.org/10.1126/science.168.3937.1345. Berglund, B.E., Gaillard, M.-J., Bjorkman, L., et al., 2008. Long-term changes in floristic diversity in southern Sweden: palynological richness, vegetation dynamics and land-use. Veg. Hist. Archaeobotany 17, 573-583. https://doi.org/10.1007/s00334-007-0094-x. Birks, H.J.B., Line, J.M., 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2, 1-10. https://doi.org/10.1177/095968369200200101. Butchart, S.H., Walpole, M., Collen, B., et al., 2010. Global biodiversity: indicators of recent declines. Science 328, 1164-1168. https://doi.org/10.1126/science.1187512. Cao, X.Y., Tian, F., Li, K., et al., 2021. Lake surface-sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions. Earth Syst. Sci. Data Discuss. 2021, 1-22. https://doi.org/10.5194/essd-13-3525-2021. Cao, X.Y., Herzschuh, U., Telford, R.J., et al., 2014. A modern pollen-climate dataset from China and Mongolia: assessing its potential for climate reconstruction. Rev. Palaeobot. Palynol. 211, 87-96. https://doi.org/10.1016/j.revpalbo.2014.08.007. Cardinale, B.J., Duffy, J.E., Gonzalez, A., et al., 2012. Biodiversity loss and its impact on humanity. Nature 486, 59-67. https://doi.org/10.1038/nature11148. Ceballos, G., Ehrlich, P.R., Barnosky, A.D., et al., 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253. Chen, H.Y., Xu, D.Y., Liao, M.N., et al., 2021. A modern pollen dataset of China. Chin. J. Plant Ecol. 45, 799. https://doi.org/10.17521/cjpe.2021.0024. Chi, C.T., Xiao, X.Y., Jia, B.Y., 2024a. Modern vegetation-climate relationships for pollen assemblages across the mountainous regions of southwestern China: implications for palaeoenvironmental reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 644, 112211. https://doi.org/10.1016/j.palaeo.2023.112211. Chi, C.T., Xiao, X.Y., Wang, J.J., et al., 2024b. The vertical distribution of modern pollen in the southeastern edge of the Tibetan Plateau, China. Palynology 48, 2258941. https://doi.org/10.1080/01916122.2023.2258941. Connor, S.E., van Leeuwen, J.F., van der Knaap, W.O., et al., 2021. Pollen and plant diversity relationships in a Mediterranean montane area. Veg. Hist. Archaeobotany 30, 583-594. https://doi.org/10.1007/s00334-020-00811-0. Cui, Y.F., Qin, F., Zhao, Y., et al., 2023. Does palynological diversity reflect floristic diversity? A case study from Northeast China. Sci. China Earth Sci. 66, 2097-2108. https://doi.org/10.1007/s11430-022-1131-y. Cwynar, L.C., 1982. A late-quaternary vegetation history from hanging lake, northern yukon: ecological archives m052-001. Ecol. Monogr. 52, 1-24. https://doi.org/10.2307/2937323. Deng, T., Wu, F.X., Wang, S.Q., et al., 2019. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau. Chin. Sci. Bull. 64, 2894-2906. https://doi.org/10.1360/TB-2019-0053. Deng, W.Y.D., Su, T., Wappler, T., et al., 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene-Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global Planet. Change 194, 103293. https://doi.org/10.1016/j.gloplacha.2020.103293. Felde, V.A., Peglar, S.M., Bjune, A.E., et al., 2016. Modern pollen-plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene 26, 163-175. https://doi.org/10.1177/0959683615596843. Giesecke, T., Ammann, B., Brande, A., 2014. Palynological richness and evenness: insights from the taxa accumulation curve. Veg. Hist. Archaeobotany 23, 217-228. https://doi.org/10.1007/s00334-014-0435-5. Goring, S., Lacourse, T., Pellatt, M.G., et al., 2013. Pollen assemblage richness does not reflect regional plant species richness: a cautionary tale. J. Ecol. 101, 1137-1145. https://doi.org/10.1111/1365-2745.12135. Gosling, W.D., Julier, A.C., Adu-Bredu, S., et al., 2018. Pollen-vegetation richness and diversity relationships in the tropics. Veg. Hist. Archaeobotany 27, 411-418. https://doi.org/10.1007/s00334-017-0642-y. Greenberg, J.H., 1956. The measurement of linguistic diversity. Language 32, 109-115. https://doi.org/10.2307/410659. Harrison, S., Goni, M.S., 2010. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957-2980. https://doi.org/10.1016/j.quascirev.2010.07.016. He, S.L., Ding, L., Xiong, Z.Y., et al., 2022. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet. Sci. Bull. 67, 2245-2258. https://doi.org/10.1016/j.scib.2022.10.006. Herzschuh, U., Borkowski, J., Schewe, J., et al., 2014. Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 402, 44-54. https://doi.org/10.1016/j.palaeo.2014.02.022. Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427-432. https://doi.org/10.2307/1934352. Huang, Y.J., Jia, L.B., Wang, Q., et al., 2016. Cenozoic plant diversity of Yunnan: a review. Plant Divers. 38, 271-282. https://doi.org/10.1016/j.pld.2016.11.004. Jaramillo, C., Rueda, M.J., Mora, G., 2006. Cenozoic plant diversity in the Neotropics. Science 311, 1893-1896. https://doi.org/10.1126/science.1121380. Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall 52, 119-139. Kuttel, M., 1984. Veranderung von Diversitat und Evenness der Tundra, aufgezeichnet im Pollendiagramm des Vuolep Allakasjaure. Bot. Helv. 94, 279-283. Li, Q., 2018. Spatial variability and long-term change in pollen diversity in Nam Co catchment (central Tibetan Plateau): implications for alpine vegetation restoration from a paleoecological perspective. Sci. China Earth Sci. 61, 270-284. https://doi.org/10.1007/s11430-017-9133-0. Li, Q., Zhao, Y., 2018. Quantitative methods and progress of paleo-floristic diversity reconstruction based on pollen assemblages. Quat. Sci. 38, 821-829. https://doi.org/10.11928/j.issn.1001-7410.2018.04.02. Li, S.F., Valdes, P.J., Farnsworth, A., et al., 2021. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741. https://doi.org/10.1126/sciadv.abc7741. Liao, M.L., Jin, Y.L., Li, K., et al., 2024. Modern pollen-plant diversity relationship in open landscapes of Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 641, 112131. https://doi.org/10.1016/j.palaeo.2024.112131. Lu, H.Y., Wu, N.Q., Liu, K.B., et al., 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat. Sci. Rev. 30, 947-966. https://doi.org/10.1016/j.quascirev.2011.01.008. Lu, L.M., Zhao, L., Hu, H.H., et al., 2023. A comprehensive evaluation of flowering plant diversity and conservation priority for national park planning in China. Fundam. Res. 3, 939-950. https://doi.org/10.1016/j.fmre.2022.08.008. Lu, L.M., Mao, L.F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. https://doi.org/10.1038/nature25485. Magurran, A.E., 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton. Matthias, I., Semmler, M.S.S., Giesecke, T., 2015. Pollen diversity captures landscape structure and diversity. J. Ecol. 103, 880-890. https://doi.org/10.1111/1365-2745.12404. Meltsov, V., Poska, A., Odgaard, B.V., et al., 2011. Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia. Rev. Palaeobot. Palynol. 166, 344-351. https://doi.org/10.1016/j.revpalbo.2011.07.001. Meltsov, V., Poska, A., Reitalu, T., et al., 2013. The role of landscape structure in determining palynological and floristic richness. Veg. Hist. Archaeobotany 22, 39-49. https://doi.org/10.1007/s00334-012-0358-y. Moore, P.D., 1973. The influence of prehistoric cultures upon the initiation and spread of blanket bog in upland Wales. Nature 241, 350-353. https://doi.org/10.1038/241350a0. Morley, R.J., 1982. A palaeoecological interpretation of a 10,000 year pollen record from Danau Padang, Central Sumatra, Indonesia. J. Biogeogr. 9, 151-190. https://doi.org/10.2307/2844699. Ni, Z.Y., Jones, R., Zhang, E.N., et al., 2019. Contrasting effects of winter and summer climate on Holocene montane vegetation belts evolution in southeastern Qinghai-Tibetan Plateau, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109232. https://doi.org/10.1016/j.palaeo.2019.06.005. Odgaard, B.V., 2001. Palaeoecological perspectives on pattern and process in plant diversity and distribution adjustments: a comment on recent developments. Divers. Distrib. 7, 197-201. https://doi.org/10.1111/j.1472-4642.2001.00110.x. Opitz, S., Zhang, C.J., Herzschuh, U., et al., 2015. Climate variability on the south-eastern Tibetan Plateau since the Lateglacial based on a multiproxy approach from Lake Naleng-comparing pollen and non-pollen signals. Quat. Sci. Rev. 115, 112-122. https://doi.org/10.1016/j.quascirev.2015.03.011. Papadopoulou, M., Tsiripidis, I., Panajiotidis, S., et al., 2022. Testing the potential of pollen assemblages to capture composition, diversity and ecological gradients of surrounding vegetation in two biogeographical regions of southeastern Europe. Veg. Hist. Archaeobotany 31, 1-15. https://doi.org/10.1007/s00334-021-00831-4. Pardoe, H.S., 2021. Identifying floristic diversity from the pollen record in open environments; considerations and limitations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 578, 110560. https://doi.org/10.1016/j.palaeo.2021.110560. Peros, M.C., Gajewski, K., 2008. Testing the reliability of pollen-based diversity estimates. J. Paleolimnol. 40, 357-368. https://doi.org/10.1007/s10933-007-9166-2. Qian, H., 2013. Environmental determinants of woody plant diversity at a regional scale in China. PLoS One 8, e75832. https://doi.org/10.1371/journal.pone.0075832. Qin, H.N., Zhao, L.N., 2017. Evaluating the threat status of higher plants in China. Biodivers. Sci. 25, 689. https://doi.org/10.17520/biods.2017007. Qin, H.N., Zhao, L.N., Yu, S.X., et al., 2017. Evaluating the endangerment status of China's angiosperms through the red list assessment. Biodivers. Science 25, 745-757. https://doi.org/10.17520/biods.2017156. Raven, P., Wackernagel, M., 2020. Maintaining biodiversity will define our long-term success. Plant Divers. 42, 211-220. https://doi.org/10.1016/j.pld.2020.06.002. Reitalu, T., Bjune, A.E., Blaus, A., et al., 2019. Patterns of modern pollen and plant richness across northern Europe. J. Ecol. 107, 1662-1677. https://doi.org/10.1111/1365-2745.13134. Rull, V., 1987. Note on pollen counting in palaeoecology. Pollen Spores 29, 471-477. Samajdar, T., Quraishi, M.I., 2015. Analysis and evaluation of image quality metrics. In: Information Systems Design and Intelligent Applications: Proceedings of Second International Conference INDIA 2015, Volume vol. 2, 369-378. https://doi.org/10.1007/978-81-322-2247-7-38. Senior, R.A., Bagwyn, R., Leng, D., et al., 2024. Global shortfalls in documented actions to conserve biodiversity. Nature 630, 387-391. https://doi.org/10.1038/s41586-024-07498-7. Senn, C., Tinner, W., Felde, V.A., et al., 2022. Modern pollen-vegetation-plant diversity relationships across large environmental gradients in northern Greece. Holocene 32, 159-173. https://doi.org/10.1177/09596836221060494. Seppa, H., 1998. Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene 8, 43-53. https://doi.org/10.1191/095968398674096317. Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. Shen, C.M., Liu, K.B., Tang, L.Y., et al., 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Rev. Palaeobot. Palynol. 140, 61-77. https://doi.org/10.1016/j.revpalbo.2006.03.001. Simberloff, D., 1972. Properties of the rarefaction diversity measurement. Am. Nat. 106, 414-418. https://doi.org/10.1086/282781. Simpson, E.H., 1949. Measurement of diversity. Nature 688, 163. https://doi.org/10.1038/163688a0. Song, W.Q., Li, Y.C., Luo, A., et al., 2024. Historical and contemporary climate jointly determine angiosperm plant diversity patterns across east Eurasia. Ecography 2024, e07062. https://doi.org/10.1111/ecog.07062. Spicer, R.A., Farnsworth, A., Su, T., 2020. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant Divers. 42, 229-254. https://doi.org/10.1016/j.pld.2020.06.011. Spicer, R.A., Wolfe, J.A., 1987. Plant taphonomy of late Holocene deposits in trinity (Clair Engle) lake, northern California. Paleobiology 13, 227-245. https://doi.org/10.1017/S0094837300008770. Su, Y.Q., Zhang, Y., Jia, X.R., et al., 2017. Application of several diversity indexes in forest community analysis. Ecol. Sci. 36, 132-138. https://doi.org/10.14108/j.cnki.1008-8873.2017.01.018. Sun, X.J., Wang, P.X., 2005. How old is the Asian monsoon system?-palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181-222. https://doi.org/10.1016/j.palaeo.2005.03.005. Taylor, L.R., 1978. Bates, Williams, Hutchinson - a variety of diversities. In: Mound, L.A., Waloff, N. (Eds.), The Diversity of Insect Faunas (Symposium of the Royal Entomological Society No. 9). Blackwell Scientific Publishing, Oxford, pp. 1-18. Valsecchi, V., Carraro, G., Conedera, M., et al., 2010. Late-Holocene vegetation and land-use dynamics in the Southern Alps (Switzerland) as a basis for nature protection and forest management. Holocene 20, 483-495. https://doi.org/10.1177/0959683609355178. Van der Walt, S., Schonberger, J.L., Nunez-Iglesias, J., et al., 2014. scikit-image: image processing in Python. PeerJ 2, e453. https://doi.org/10.7717/peerj.453. Veski, S., Koppel, K., Poska, A., 2005. Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rouge, southern Estonia. J. Biogeogr. 32, 1473-1488. https://doi.org/10.1111/j.1365-2699.2005.01290.x. Wang, N.N., Liu, L.N., Zhang, Y.R., et al., 2022. A modern pollen data set for the forest-meadow-steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction. Boreas 51, 847-858. https://doi.org/10.1111/bor.12589. Wang, Z., Bovik, A.C., Sheikh, H.R., et al., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600-612. https://doi.org/10.1109/TIP.2003.819861. Wang, Z.H., Fang, J.Y., Tang, Z.Y., et al., 2011. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B-Biol. Sci. 278, 2122-2132. https://doi.org/10.1098/rspb.2010.2329. Wei, H.C., Ma, H.Z., Zheng, Z., et al., 2011. Modern pollen assemblages of surface samples and their relationships to vegetation and climate in the northeastern Qinghai-Tibetan Plateau, China. Rev. Palaeobot. Palynol.163, 237-246. https://doi.org/10.1016/j.revpalbo.2010.10.011. Weng, C.Y., Hooghiemstra, H., Duivenvoorden, J.F., 2006. Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems, and possible solutions. Divers. Distrib. 12, 310-318. https://doi.org/10.1111/j.1365-2699.2006.00238.x. Willis, K.J., Bailey, R.M., Bhagwat, S.A., et al., 2010. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583-591. https://doi.org/10.1016/j.tree.2010.07.006. Winfield, M.O., Lu, C., Wilson, I.D., et al., 2010. Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol. J. 8, 749-771. https://doi.org/10.1111/j.1467-7652.2010.00536.x. Woodward, F.I., Williams, B.G., 1987. Climate and plant distribution at global and local scales. Vegetatio 69, 189-197. https://doi.org/10.1007/BF00038700. Wu, F.L., Fang, X.M., An, C.R., et al., 2013. Over-representation of Picea pollen induced by water transport in arid regions. Quat. Int. 298, 134-140. https://doi.org/10.1016/j.quaint.2012.11.026. Wu, F.L., Gao, S.J., Tang, F.J., et al., 2019. A late Miocene-early Pleistocene palynological record and its climatic and tectonic implications for the Yunnan Plateau, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 190-199. https://doi.org/10.1016/j.palaeo.2019.05.037. Wu, F.L., Fang, X.M., Yang, Y.B., et al., 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 684-700. https://doi.org/10.1038/s43017-022-00331-7. Xia, J., Ni, J., 2024. Regional features of pollen R-values in China. Sci. China Earth Sci. 67, 295-308. https://doi.org/10.1007/s11430-022-1191-8. Xiao, X.Y., Shen, J., Wang, S.M., et al., 2008. The plant diversity and its relationship with paleoenvironment since 2.78 Ma revealed by pollen records in the Heqing deep drilling core. Chin. Sci. Bull. 53, 3686-3698. https://doi.org/10.1007/s11434-008-0482-6. Xiao, X.Y., Zhao, Y., Chi, C.T., et al., 2023. Quantitative pollen-based paleoclimate reconstructions for the past 18.5 ka in southwestern Yunnan Province, China. Global Planet. Change 230, 104288. https://doi.org/10.1016/j.gloplacha.2023.104288. Xu, Q. H., Cao, X. Y., Tian, F., et al. 2014. Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction. Sci. China Earth Sci. 57, 1254-1266. https://doi.org/10.1007/s11430-013-4738-7. Zhang, L.B., Gilbert, M.G., 2015. Comparison of classifications of vascular plants of China. Taxon 64, 17-26. https://doi.org/10.12705/641.23. Zhang, R., Tian, F., Xu, Q.H., et al., 2020. Representation of modern pollen assemblage to vertical variations of vegetation and climate in the Yadong area, eastern Himalaya. Quat. Int. 536, 45-51. https://doi.org/10.1016/j.quaint.2019.11.036. Zhang, Y.X., Steiner, A.L., 2022. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat. Commun. 13, 1234. https://doi.org/10.1038/s41467-022-28764-0. Zhang, J.P., Jiang, L.P., Yu, L.P., et al. 2024. Rice's trajectory from wild to domesticated in East Asia. Science 384, 901-906. https://doi.org/10.1126/science.ade4487. Zhao, Y.J, Zhao, L.N., Hu, H.H., et al., 2023. Angiosperm diversity and conservation progress in China. Chin. J. Nat. 45, 399-409. https://doi.org/10.3969/j.issn.0253-9608.2023.06.001. Zhao, Y., Tzedakis, P.C., Li, Q., et al., 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci. Adv. 6, eaay6193. https://doi.org/10.1126/sciadv.aay6193. Zhou, A.M., Liu, E.H., Li, H., et al., 2018. PsCor413pm2, a plasma membrane-localized, cold-regulated protein from Phlox subulata, confers low temperature tolerance in Arabidopsis. Int. J. Mol. Sci. 19, 2579. https://doi.org/10.3390/ijms19092579. Zhou, Z.K., Liu, J., Chen, L.L., et al., 2023. Cenozoic plants from Tibet: an extraordinary decade of discovery, understanding and implications. Sci. China Earth Sci. 66, 205-226. https://doi.org/10.1007/s11430-022-9980-9. Zu, K.L., Chen, F.S., Li, Y.Q., et al. 2024. Climate change impacts flowering phenology in Gongga Mountains, Southwest China. Plant Divers. 46, 774-782. https://doi.org/10.1016/j.pld.2023.07.007. |
[1] | Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains [J]. Plant Diversity, 2024, 46(05): 661-670. |
[2] | Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients? [J]. Plant Diversity, 2023, 45(04): 446-455. |
[3] | Daniel Mutavi Katumo, Huan Liang, Anne Christine Ochola, Min Lv, Qing-Feng Wang, Chun-Feng Yang. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare [J]. Plant Diversity, 2022, 44(05): 429-435. |
[4] | Aysajan Abdusalam, Reyilamu Maimaitituerxun, Halibinuer Hashan, Gulzar Abdukirim. Pollination adaptations of group-by-group stamen movement in a meadow plant with temporal floral closure [J]. Plant Diversity, 2021, 43(04): 308-316. |
[5] | Juan Qiu, Jianwen Zhang, Tiangang Gao, Dunyan Tan. Crepis desertorum (Asteraceae, Cichorieae), a new species from northern Xinjiang (China) based on morphological and molecular data [J]. Plant Diversity, 2020, 42(02): 74-82. |
[6] | Guopeng Zhang, Lihua Meng, Zhikun Wu, Zhiqiang Zhang, Lingjuan Yin, Yongping Yang, Yuanwen Duan. Natural selection on floral traits of Caltha scaposa (Ranunculaceae), an alpine perennial with generalized pollination system from Northwest Yunnan [J]. Plant Diversity, 2017, 39(04): 202-207. |
[7] | Alan C. Hamilton*, Deborah Karamura, Esezah Kakudidi. History and conservation of wild and cultivated plant diversity in Uganda: forest species and banana varieties as case studies [J]. Plant Diversity, 2016, 38(01): 26-52. |
[8] | CHEN Wen-Hong-, CHEN Run-Zheng-, YU Zhi-Yong-, ZHU Xin-Tian-, SHUI Yu-Min. Raphiocarpus jinpingensis, a New Species of Gesneriaceae in Yunnan, China [J]. Plant Diversity, 2015, 37(06): 727-732. |
[9] | ZHENG Xin-, MIN Yun-Jiang-, XU Bo-, SUN Hang-, ZHOU Zhong-Ze. Pollen Morphology of Plants from the Hengduan Mountains and Their Ecological Significance [J]. Plant Diversity, 2015, 37(06): 657-682. |
[10] | YANG Chen-Xuan, CHEN Li, WANG Juan, YANG Yu-Ming, LI Lu. Pollen Morphology of the Chinese Endemic Clematoclethra (Actinidiaceae) and Its Taxonomic Implications [J]. Plant Diversity, 2014, 36(05): 569-577. |
[11] | MAO Feng-Juan-, LI Shuang-Zhi-, XU Qiong-Hua-, MA Shi-Zhu-, ZHANG Dian-Xiang. Pollen Morphology of Glycosmis (Rutaceae) and Its Systematic Implications [J]. Plant Diversity, 2013, 35(2): 109-118. |
[12] | LIU Yong, XU Feng-Xia. Pollen Morphology of Four Selected Species in the Annonaceae [J]. Plant Diversity, 2012, 34(5): 443-452. |
[13] | XIE Yan-Ping-, SUN Hang-, NIE Ze-Long. Pollen Morphology of Tibetia (Fabaceae) from the Hengduan Mountains, with Emphasis on the Taxonomical Status of Tibetia liangshanensis [J]. Plant Diversity, 2012, 34(4): 326-. |
[14] | ZHANG Ming-Ying-, LU Lu-, LI De-Zhu-, WANG Hong. Evolution of Pollen in the Family Berberidaceae [J]. Plant Diversity, 2012, 34(01): 1-12. |
[15] | XU La-, LU Lu-, LI De-Zhu-, WANG Hong. Evolution of Pollen in the Dipsacales [J]. Plant Diversity, 2011, 33(3): 249-259. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||