郑万钧, 傅立国, 1978. 中国植物志 (第7卷) [M]. 北京: 科学出版社
Allouche O, Tsoar A, Kadmon R, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) [J]. Journal of Applied Ecology, 43 (6): 1223—1232
Araújo MB, New M, 2007. Ensemble forecasting of species distributions[J]. Trends in Ecology and Evolution, 22 (1): 42—47
Austin M, 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches[J]. Ecological Modelling, 200 (1-2): 1—19
Austin MP, 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modeling[J]. Ecological Modelling, 157(2-3): 101—118
Austin MP, Van Niel KP, 2011. Improving species distribution models for climate change studies: variable selection and scale[J]. Journal of Biogeography, 38 (1): 1—8
Bannister P, Neuner G, Bigras F et al., 2001. Frost Resistance and the Distribution of Conifers, Conifer Cold Hardiness[M]. Spuiboulevard: Kluwer Academic Publishers, 3—21
BarbetMassin M, Jiguet F, Albert CH et al., 2012. Selecting pseudoabsences for species distribution models: how, where and how many? [J]. Methods in Ecology and Evolution, 3 (2): 327—338
Barry S, Elith J, 2006. Error and uncertainty in habitat models[J]. Journal of Applied Ecology, 43 (3): 413—423
Bellard C, Bertelsmeier C, Leadley P et al., 2012. Impacts of climate change on the future of biodiversity[J]. Ecology Letters, 15 (4): 365—377
Breiman L, 2001. Random forests[J]. Machine Learning, 45 (1): 5—32
Breiman L, Friedman J, Olshen R et al., 1999. Classification and Regression Trees[M]. New York: CRC Press
Brotons L, Thuiller W, Araújo MB et al., 2004. Presenceabsence versus presenceonly modelling methods for predicting bird habitat suitability[J]. Ecography, 27 (4): 437—448
Buisson L, Thuiller W, Casajus N et al., 2010. Uncertainty in ensemble forecasting of species distribution[J]. Global Change Biology, 16 (4): 1145—1157
Busby JR, 1991. BIOCLIMa bioclimate analysis and prediction system[J]. Plant Protection Quarterly, 6 (1): 8—9
Canhos VP, Souza Sd, Giovanni RD et al., 2004. Global Biodiversity Informatics: setting the scene for a “new world” of ecological forecasting[J]. Biodiversity Informatics, 1: 1—13
Del Tredici P, Kitajima A, 2004. Introduction and cultivation of Chinese hemlock (Tsuga chinensis) and its resistance to hemlock woolly adelgid (Adelges tsugae) [J]. Journal of Arboriculture, 30 (5): 282—287
Elith J, Graham HC, Anderson PR et al., 2006. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 29 (2): 129—151
Fielding AH, Bell JF, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models[J]. Environmental Conservation, 24 (1): 38—49
Franklin J, 1998. Predicting the distribution of shrub species in southern California from climate and terrainderived variables (abstract GEOBASE) [J]. Journal of Vegetation Science, 9 (5): 733—748
Friedman JH, 1991. Multivariate adaptive regression splines[J]. The Annals of Statistics, 19 (1): 1—67
Gallien L, Münkemüller T, Albert CH et al., 2010. Predicting potential distributions of invasive species: where to go from here? [J]. Diversity and Distributions, 16 (3): 331—342
Guisan A, Thuiller W, 2005. Predicting species distribution: offering more than simple habitat models[J]. Ecology Letters, 8 (9): 993—1009
Guisan A, Zimmermann NE, 2000. Predictive habitat distribution models in ecology[J]. Ecological Modelling, 135 (2-3): 147—186
Hastie T, Tibshirani R, Buja A, 1994. Flexible discriminant analysis by optimal scoring[J]. Journal of the American Statistical Association, 89 (428): 1255—1270
Hastie TJ, Tibshirani R, 1990. Generalized Additive Models[M]. London: Chapman & Hall/CRC
Heibl C, Renner SS, 2012. Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation[J]. Systematic Biology, 61 (5): 823—834
Leathwick JR, Elith J, Hastie T, 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions[J]. Ecological Modelling, 199 (2): 188—196
Loiselle BA, Jrgensen PM, Consiglio T et al., 2008. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? [J]. Journal of Biogeography, 35 (1): 105—116
Maiorano L, Cheddadi R, Zimmermann NE et al., 2012. Building the niche through time: using 13000 years of data to predict the effects of climate change on three tree species in Europe[J]. Global Ecology and Biogeography: http://wileyonlinelibrary.com/journal/geb
Marmion M, Luoto M, Heikkinen RK, 2009. The performance of stateoftheart modelling techniques depends on geographical distribution of species[J]. Ecological Modelling, 220 (24): 3512—3520
McCullagh P, Nelder JA, 1989. Generalized Linear Models[M]. London: Chapman & Hall/CRC, 35
McPherson JM, Jetz W, 2007. Effects of species’ ecology on the accuracy of distribution models[J]. Ecography, 30 (1): 135—151
Naimi B, Skidmore AK, Groen TA et al., 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modeling[J]. Journal of Biogeography, 38 (8): 1497—1509
Petitpierre B, Kueffer C, Broennimann O et al., 2012. Climatic niche shifts are rare among terrestrial plant invaders[J]. Science, 335 (6074): 1344—1348
Phillips SJ, Anderson RP, Schapire RE, 2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190 (3-4): 231—259
Phillips SJ, Miroslav D, Jane E et al., 2009. Sample selection bias and presenceonly distribution models: implications for background and pseudoabsence data[J]. Ecological Applications, 19 (1): 181—197
Prasad A, Iverson L, Liaw A, 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction[J]. Ecosystems, 9 (2): 181—199
Pulliam HR, 2000. On the relationship between niche and distribution[J]. Ecology Letters, 3 (4): 349—361
Ridgeway G, 1999. The state of boosting[J]. Computing Science and Statistics, 31: 172—181
Ripley BD, 1996. Pattern Recognition and Neural Networkds[M]. London: Cambridge University Press
Schmidt M, Kreft H, Thiombiano A et al., 2005. Herbarium collections and field databased plant diversity maps for Burkina Faso[J]. Diversity and Distributions, 11 (6): 509—516
Smith SA, Donoghue MJ, 2010. Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales) [J]. Systematic Biology, 59 (3): 322—341
Thuiller W, 2004. Patterns and uncertainties of species’ range shifts under climate change[J]. Global Change Biology, 10 (12): 2020—2027
Thuiller W, Lafourcade B, Engler R et al., 2009. BIOMOD-a platform for ensemble forecasting of species distributions[J]. Ecography, 32 (3): 369—373
Václavík T, Meentemeyer RK, 2012. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion[J]. Diversity and Distributions, 18 (1): 73—83
Van Horssen PW, Pebesma EJ, Schot PP, 2002. Uncertainties in spatially aggregated predictions from a logistic regression model[J]. Ecological Modelling, 154 (1-2): 93—101
Wiens JA, Stralberg D, Jongsomjit D et al., 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties[J]. Proceedings of the National Academy of Sciences of the United States of America, 106 (2): 19729—19736
Williams KJ, Belbin L, Austin MP et al., 2012. Which environmental variables should I use in my biodiversity model? [J]. International Journal of Geographical Information Science, 26 (11): 2009—2047
Ying JS (应俊生), 1989. Areography of the gymnosperms of China (1)-distribution of the Pinaceae of China[J]. Acta Phytotaxonomic Sinica (植物分类学报), 27 (1): 27—38
|