Plant Diversity ›› 2021, Vol. 43 ›› Issue (06): 480-491.DOI: 10.1016/j.pld.2020.12.006
• Articles • Previous Articles Next Articles
Lin-Bo Jiaa, Gi-Soo Namb, Tao Suc,d, Gregory W. Stulle,f, Shu-Feng Lic, Yong-Jiang Huanga, Zhe-Kun Zhoua
Received:
2020-10-23
Revised:
2020-12-08
Online:
2021-12-25
Published:
2022-01-11
Contact:
Lin-Bo Jia, Yong-Jiang Huang
Supported by:
Lin-Bo Jia, Gi-Soo Nam, Tao Su, Gregory W. Stull, Shu-Feng Li, Yong-Jiang Huang, Zhe-Kun Zhou. Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants[J]. Plant Diversity, 2021, 43(06): 480-491.
Add to citation manager EndNote|Ris|BibTeX
Abdullah, Shahzadi, I., Mehmood, F., et al., 2019. Comparative analyses of chloroplast genomes among three Firmiana species: identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae. Plant Gene 19, 100199. APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20. Bayer, C., Fay, M.F., Bruijn, A.Y.D., et al., 1999. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. Linn. Soc. 129, 267-303. Bouchal, J.M., Güner, T.H., Denk, T., 2018. Middle Miocene climate of southwestern Anatolia from multiple botanical proxies. Clim. Past 14, 1427-1440. Cai, J., Ma, P.F., Li, H.T., et al., 2015. Complete plastid genome sequencing of four Tilia species (Malvaceae): a comparative analysis and phylogenetic implications. PloS One 10, e0142705. Chun, H.Y., 1982. Plant fossils from the Tertiary Pohang sedimentary basin, Korea. Korea Inst. Energ. Resour. 14, 7-23. Chun, H.Y., 2004. Taxonomic and morphological diversity of the Miocene Pohang flora. Geol. Korea. Spec. Publ. 2, 25-38. Dejax, J., De Franceschi, D., Lugardon, B., et al., 2001. Le contenu cellulaire du pollen fossilisé dans l’ambre, préservé à l'état organique. Inst. Earth Sci. Pl. Sci. ser. 332, 339-344. Deng, T., Wang, X.M., Wang, X.J., et al., 2004. Cenozoic stratigraphic sequence of the Linxia Basin in Gansu, China and its evidence from mammal fossils. Vertb. PalA. 42, 45-66. Donoghue, M.J., Smith, S.A., 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. T. R. Soc. B 359, 1633-1644. Givulescu, R., 1997. Eine Übersicht über die fossilen Tilia-Hochblätter Rumäniens und einige Bemerkungen über die Nomenklatur der europäischen TiliaHochblätter. Feddes Repert. 108, 143-149. Hall, J.W., Swain, A.M., 1971. Pedunculate bracts of Tilia from the tertiary of western United States. B. Torrey Bot. Club 98, 95-100. Harris, A., Walker, C., Dee, J.R., et al., 2016. Latitudinal trends in genus richness of vascular plants in the Eocene and Oligocene of North America. Plant Divers. 38, 133-141. Holbourn, A., Kuhnt, W., Kochhann, K.G.D., et al., 2015. Global perturbation of the carboncycle at the onsetof the Miocene Climatic Optimum.Geology 43,123-126. Hu, H.H., Chaney, R.W., 1940. A Miocene Flora from Shantung Province, China. Carnegie Institution of Washington Publication, Washington. Jacques, F.M.B., Shi, G., Su, T., et al., 2015. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 216, 76-91. Jia, L.B., Manchester, S.R., Su, T., et al., 2015. First occurrence of Cedrelospermum(Ulmaceae) in Asia and its biogeographic implications. J. Plant Res.128, 747-761. Jia, L.B., Su, T., Huang, Y.J., et al., 2018. First fossil record of Cedrelospermum(Ulmaceae) from the QinghaieTibetan plateau: implications for morphological evolution and biogeography. J. Systemat. Evol. 57, 94-104. Jiang, D., Klaus, S., Zhang, Y.-P., et al., 2019. Asymmetric biotic interchange across the bering land bridge between eurasia and north America. Natl. Sci. Rew. https://doi.org/10.1093/nsr/nwz035/5381568. Jiménez-Moreno, G., 2006. Progressive substitution of a subtropical forest for a temperate one during the middle Miocene climate cooling in Central Europe according to palynological data from cores Tengelic-2 and Hidas-53 (Pannonian Basin, Hungary). Rev. Palaeobot. Palynol. 142, 1-14. Jung, S.-H., Lee, S.-J., 2009. Fossil-winged fruits of Fraxinus (Oleaceae) and Liriodendron (Magnoliaceae) from the Duho Formation, Pohang Basin, Korea. Acta Geol. Sin. 83, 845-852. Kim, K.H., Doh, S., Hwang, C., et al.,1993. Paleomagnetic study of the Yeonil group in Pohang Basin. J. Korean Inst. Min. Geol. 26, 507-518. Kostermans, A.J.G.H., 1957. The genus Firmiana Marsili (Sterculiaceae). Reinwartia 4, 281-310. Kvaček, Z., Walther, H., 2004. Oligocene flora of Bechlejovice at Děčín from the neovolcanic area of the Ceské Středohoří mountains, Czech republic. Acta. Muse. Nat. Prague, Nat. Hist. 60, 9-60. Li, S.F., Mao, L.M., Spicer, R.A., et al., 2015. Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 425, 14-40. Liu, P., Wen, J., Yi, T., 2017. Evolution of biogeographic disjunction between eastern Asia and North America in Chamaecyparis: insights from ecological niche models. Plant Divers. 39, 111-116. Mai, D.H., 1961. Über eine fossile Tiliaceen-Blüte und tilioid Pollen aus dem deutschen Tertiär. Geologie 10, 54-93. Manchester, S.R., 1994. Inflorescence bracts of fossil and extant Tilia in North America, Europe, and Asia: patterns of morphologic divergence and biogeographic history. Am. J. Bot. 81, 1176-1185. McCarthy, D., 2012. Systematics and Phylogeography of the Genus Tilia in North America. Chicago, Illinois. Mosbrugger, V., Utescher, T., Dilcher, D.L., 2005. Cenozoic continental climatic evolution in central Europe. Proc. Natl. Acad. Sci. U.S.A. 102, 14964-14969. Nikitin, V.P., 1976. Flora of Mamontova Gora (Seeds and Fruits). Miocene Strata of Mamontova Gora (Stratigraphy and Fossil Flora). Nauka, Moscow, pp. 131-194. Nikitin, V.P., 2007. Paleogene and Neogene strata in northeastern Asia: paleocarpological background. Russ. Geol. Geophys. 48, 675-682. Phuekvilai, P., 2014. Relicts, refugia and reticulation: a study of population history, hybrids and phylogeny in the long-lived flowering tree genus Tilia. Newcastle University, Newcastle, p. 172. Pigott, D., 2012. Lime-trees and Basswoods: A Biological Monograph of the Genus Tilia. Cambridge University Press, New York. Popova, S., Utescher, T., Gromyko, D.V., et al., 2017. Cenozoic vegetation gradients in the mid- and higher latitudes of Central Eurasia and climatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 69-82. Sanmartín, I., 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345-390. Shi, G.L., Li, H.M., 2010. A fossil fruit wing of Dipterocarpus from the middle Miocene of Fujian, China and its palaeoclimatic significance. Rev. Palaeobot. Palynol. 162, 599-606. Spitzlberger, G., 1984. Eine urtümliche Lindenart der Tertiärzeit (Tilia atavia nov.spec.) von Goldern bei Landshut (Niederbayern). Nat. Zeits. Nied. 30, 133-171. Sun, B., 1999. Fossil Plants from Shanwang Flora. Shandong Science and Technology Press, Jinan. Tang, Y., Gilbert, M.G., Dorr, L.J., 2007a. Sterculiaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 302-330. Tang, Y., Gilbert, M.G., Dorr, L.J., 2007b. Tiliaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y.(Eds.), Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 240-263. Tian, Y.-M., Huang, J., Su, T., et al., 2021. Early Oligocene Itea (Iteaceae) leaves from east Asia and their biogeographic implications. Plant Divers. 43, 142-151.https://doi.org/10.1016/j.pld.2020.09.006. Tiffney, B.H., Manchester, S.R., 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162, S3-S17. Utescher, T., Bruch, A.A., Micheels, A., et al., 2011. Cenozoic climate gradients in Eurasiada palaeo-perspective on future climate change? Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 351-358. Wen, J., Nie, Z.-L., Ickert-Bond, S.M., 2016. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J. Systemat. Evol. 54, 469-490. Westerhold, T., Marwan, N., Drury, A.J., et al., 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369, 1383-1387. Wolfe, J.A., Wehr, W., 1987. Middle Eocene dicotyledonous plants from Republic, northeastern Washington. U.S. Geol. Surv. B 1597, 1-25. Writing Group of Cenozoic plants from China, 1978. Cenozic Plants from China.Science Press, Beijing. Xie, S.P., Manchester, S.R., Liu, K.N., et al., 2014. Firmiana (Malvaceae: Sterculioideae) fruits from the Upper Miocene of Yunnan, Southwest China. Geobios 47, 271-279. Xing, Y., Gandolfo, M.A., Onstein, R.E., et al., 2016. Testing the biases in the rich Cenozoic angiosperm macrofossil record. Int. J. Plant Sci. 177, 371-388. Yang, J., Wang, Y.F., Spicer, R.A., et al., 2007. Climatic reconstruction at the Miocene Shanwang Basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. Am. J. Bot. 94, 59-608. You, Y., Huber, M., Müller, R.D., et al., 2009. Simulation of the Middle Miocene Climate Optimum. Geophys. Res. Lett. 36, L04702. Yun, H., 1986. Emended stratigraphy of the Miocene formations in the Pohang Basin, Part I. J. Paleontol. Soc. Korea 2, 54-69. Yun, H., Yi, S., Byun, H., 1997. Tertiary system of Korea. Spec. Publ. Paleontol. Soci. Korea 3, 1-30. Zhao, H., Sun, Y., Qiang, X., 2017. Iron oxide characteristics of mid-Miocene Red Clay deposits on the western Chinese Loess Plateau and their paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 162-172. Zheng, D., Shi, G., Hemming, S.R., et al., 2019. Age constraints on a Neogene tropical rainforest in China and its relation to the Middle Miocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 518, 82-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||