Plant Diversity ›› 2022, Vol. 44 ›› Issue (03): 308-315.DOI: 10.1016/j.pld.2022.01.004
• Articles • Previous Articles Next Articles
Xing Hea,b, Tian-Quan Lua,b, Jiang-Ying Lia,c, Ping Maod, Li Zhanga,b, Guo-Wei Zhenge, Bo Tiana,f
Received:
2021-11-28
Revised:
2022-01-16
Online:
2022-05-25
Published:
2022-06-21
Contact:
Bo Tian,E-mail:tianbo@xtbg.ac.cn
Supported by:
Xing He, Tian-Quan Lu, Jiang-Ying Li, Ping Mao, Li Zhang, Guo-Wei Zheng, Bo Tian. Germplasm resources of three wood plant species enriched with nervonic acid[J]. Plant Diversity, 2022, 44(03): 308-315.
Add to citation manager EndNote|Ris|BibTeX
Amminger, G.P., Schafer, M.R., Klier, C.M., et al., 2012. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol. Psychiatr. 17, 1150-1152 Blacklock, B.J., Jaworski, J.G., 2002. Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. Eur. J. Biochem. 269, 4789-4798 Ghada, K., Mohamed, H., Sabrine, S., et al., 2018. A systematic comparison of 25 Tunisian plant species based on oil and phenolic contents, fatty acid composition and antioxidant activity. Ind. Crop. Prod. 123, 768-778 Guo, F.B., Wang, S.H., Wang, J., et al., 2018. Fruit yield and characters of wild Malania oleifera, a rare plant species in southwest China. Guihaia 38, 57-64 He, X., Li, D.Z.,Tian, B., 2021. Diversity in seed oil content and fatty acid composition in Acer species with potential as sources of nervonic acid. Plant Divers. 43, 86-92 Huai, D., Zhang, Y., Zhang, C., et al., 2015. Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in Camelina sativa. PLoS One 10, e0131755 Hui, Y.H., 1996. Bailey's Industrial Oil and Fat Products. vol. 1. Wiley-Interscience, New York, USA Jart, A., 1978. The fatty acid composition of various cruciferous seeds. J. Am. Oil Chem. Soc. 55, 873-875 Jia, L., Zhou, J., 1987. The Oil Plants in China. Science Press, Beijing Lai, J., 2006. Study on Conservation Biology of Rear and Precious Plant Malania oleifera. dissertation, Sichuan University Lewkowicz, N., Pitek, P., Namiecinska, M., et al., 2019. Naturally occurring nervonic acid ester improves myelin synthesis by human oligodendrocytes. Cells 8, 786 Li, A.R., Mao, P., Li, Y.J., 2019a. Root hemiparasitism in Malania oleifera (olacaceae), a neglected aspect in research of the highly valued tree species. Plant Divers. 41, 347-351 Li, Q., Chen, J., Yu, X., et al., 2019b. A mini review of nervonic acid: source, production, and biological functions. Food Chem. 301, 125286 Litchfield, C., 1970. Tropaeolum speciosum seed fat: a rich source of cis-15-tetracosenoic andcis-17-hexacosenoic acids. Lipids 5, 144-146 Liu, F., Wang, P., Xiong, X., et al., 2021. A review of nervonic acid production in plants: prospects for the genetic engineering of high nervonic acid cultivars plants. Front. Plant Sci. 12, 626625 Lv, S., Wei, C., Huang, F., et al., 2016. Fruit and seed traits and adaptability to rocky desertification mountain of rare tree species Malania oleifera. Chinese J. Ecol. 35, 57-62 Ma, B.L., Liang, S.F., Zhao, D.Y., et al., 2004. Study on plants containing nervonic acid. Acta Bot. Boreali Occident. Sin. 24, 2362-2365 Mastebroek, H.D., Marvin, H.J.P., 2000. Breeding prospects of Lunaria annua L. Ind. Crop. Prod. 11, 139-143 Merrill, A.H., Schmelz, E.M., Wang, E., et al., 1997. Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets. J. Nutr. 127(5 Suppl. l.), 830S-833S Parke, D.V, Parke, A.L., 1999. Rape seed oil - an autoxidative food lipid. J. Clin. Biochem. Nutr. 26, 51-61 Qiu H, Michael G.G., 2008. Flora of China. Science Press, Beijing, (and Missouri Botanical Garden Press, St. Louis) Qiu, H., 1996. Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, Flora Reipublicae Popularis Sinicae 44, Science Press, Beijing Salas, J.J., Ohlrogge, J.B., 2002. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys. 403, 25-34 Sargent, J.R., Coupland, K., Wilson, R., 1994. Nervonic acid and demyelinating disease. Med. Hypotheses 42, 237-242 Tang, T.F., Liu, X.M., Ling, M., et al., 2013. Constituents of the essential oil and fatty acid from Malania oleifera. Ind. Crop. Prod. 43, 1-5 Taylor, D.C., Francis, T., Guo, Y., et al., 2009. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol. J. 7, 925-938 Tian, B., Sun, M., Jayawardana, K., et al., 2020. Characterization of a PLDζ2 homology gene from developing castor bean endosperm. Lipids 55, 537-548 Vajreswari, A., Rao, P.S., Tulpule, P.G., 1991. Short-term effects of low erucic acid rapeseed oil and high erucic mustard oil on myocardial lipidosis of CFY strain of rats. J. Oil Technol.Assoc. India 23, 2-5 Vozella, V., Basit, A., Misto, A., et al., 2017. Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Biochim. Biophys. Acta 1862, 1502-1511 Whitmore, T.C., 2008. The Genus Macaranga, a Prodromus. Kew, Royal Botanic Gardens Wu, Z., Raven, P., Hong, D., 2003. Flora of China. Vol. vol. 5 (Ulmaceae through Basellaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis Xu, C.Q., Liu, H., Zhou, S.S., et al., 2019. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. GigaScience 8, 1-14 Yuan, Y., Xiao, H., Kang, H., et al., 2009. Fluorescence spectra study of a new toxic protein from Malania oleifera. Spectrosc. Spectr. Anal. 29, 777-780 |
[1] | Hong Qian, Shenhua Qian. Geographic patterns of taxonomic and phylogenetic β-diversity of angiosperm genera in regional floras across the world [J]. Plant Diversity, 2023, 45(05): 491-500. |
[2] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[3] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America [J]. Plant Diversity, 2023, 45(04): 369-384. |
[4] | Cindy Q. Tang, Shi-Qian Yao, Peng-Bin Han, Jian-Ran Wen, Shuaifeng Li, Ming-Chun Peng, Chong-Yun Wang, Tetsuya Matsui, Yong-Ping Li, Shan Lu, Yuan He. Forest characteristics, population structure and growth trends of threatened relict Pseudotsuga forrestii in China [J]. Plant Diversity, 2023, 45(04): 422-433. |
[5] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity [J]. Plant Diversity, 2023, 45(04): 479-484. |
[6] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[7] | Qin Liu, Tian-Tian Xue, Xiao-Xia Zhang, Xu-Dong Yang, Fei Qin, Wen-Di Zhang, Lei Wu, Rainer W. Bussmann, Sheng-Xiang Yu. Distribution and conservation of near threatened plants in China [J]. Plant Diversity, 2023, 45(03): 272-283. |
[8] | Thant Sin Aung, Alice C. Hughes, Phyo Kay Khine, Bo Liu, Xiao-Li Shen, Ke-Ping Ma. Patterns of floristic inventory and plant collections in Myanmar [J]. Plant Diversity, 2023, 45(03): 302-308. |
[9] | Ya-Dong Zhou, Hong Qian, Yi Jin, Ke-Yan Xiao, Xue Yan, Qing-Feng Wang. Geographic patterns of taxonomic and phylogenetic β-diversity of aquatic angiosperms in China [J]. Plant Diversity, 2023, 45(02): 177-184. |
[10] | Jian Zhang, Hong Qian. U.Taxonstand: An R package for standardizing scientific names of plants and animals [J]. Plant Diversity, 2023, 45(01): 1-5. |
[11] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[12] | Ben-Wen Liu, Shu-Yin Li, Huan Zhu, Guo-Xiang Liu. Phyllosphere eukaryotic microalgal communities in rainforests: Drivers and diversity [J]. Plant Diversity, 2023, 45(01): 45-53. |
[13] | Tian-Yao Li, Chen Ye, Yi-Jie Zhang, Jun-Xing Zhang, Min Yang, Xia-Hong He, Xin-Yue Mei, Yi-Xiang Liu, You-Yong Zhu, Hui-Chuan Huang, Shu-Sheng Zhu. 2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax [J]. Plant Diversity, 2023, 45(01): 104-116. |
[14] | Moses C. Wambulwa, Peng-Zhen Fan, Richard Milne, Zeng-Yuan Wu, Ya-Huang Luo, Yue-Hua Wang, Hong Wang, Lian-Ming Gao, Zuo-Ying Xiahou, Ye-Chuan Jin, Lin-Jiang Ye, Zu-Chang Xu, Zhi-Chun Yang, De-Zhu Li, Jie Liu. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement [J]. Plant Diversity, 2022, 44(06): 530-541. |
[15] | Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China [J]. Plant Diversity, 2022, 44(05): 436-444. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||