Plant Diversity ›› 2023, Vol. 45 ›› Issue (01): 27-35.DOI: 10.1016/j.pld.2022.09.008
• Articles • Previous Articles Next Articles
Han-Yang Lina,c,g, Miao Sunb,c, Ya-Jun Haoa, Daijiang Lic, Matthew A. Gitzendannerc,d, Cheng-Xin Fua, Douglas E. Soltisc,d,e,f, Pamela S. Soltisc,e,f, Yun-Peng Zhaoa
Received:
2022-06-24
Revised:
2022-09-29
Published:
2023-02-23
Contact:
Pamela S. Soltis,E-mail:psoltis@flmnh.ufl.edu;Yun-Peng Zhao,E-mail:ypzhao@zju.edu.cn
Supported by:
Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time[J]. Plant Diversity, 2023, 45(01): 27-35.
Add to citation manager EndNote|Ris|BibTeX
[1] Aguilar-Tomasini, M.A., Martin, M.D., Speed, J.D., 2021. Assessing spatial patterns of phylogenetic diversity of Mexican mammals for biodiversity conservation. Glob. Ecol. Conserv. 31, e01834 [2] Allen, J.M., Germain-Aubrey, C.C., Barve, N., et al., 2019. Spatial phylogenetics of Florida vascular plants:the effects of calibration and uncertainty on diversity estimates. iScience 11, 57-70 [3] Beckett, S., Golden, M.S., 1982. Forest vegetation and vascular flora of reed brake research natural area, Alabama. Castanea 47, 368-392 [4] Bivand, R.S., Pebesma, E., Gomez-Rubio, V., 2013. Applied Spatial Data Analysis with R, second ed. Springer, New York [5] Bivand, R., Keitt, T., Rowlingson, B., 2019. Rgdal:Bindings for the 'Geospatial' Data Abstraction Library (R package version 1.4-3). Retrieved from https://CRAN.R-project.org/package=rgdal [6] Brown, J.W., Walker, J.F., Smith, S.A., 2017. Phyx:phylogenetic tools for unix. Bioinformatics 33, 1886-1888 [7] Cayuela, L., Macarro, I., Stein, A., et al., 2019. Taxonstand:Taxonomic Standardization of Plant Species Names (R Package Version 2.2). Retrieved from https://CRAN.R-project.org/package=Taxonstand [8] Chamberlain, S., 2018. Spocc:Interface to Species Occurrence Data Sources (R Package Version 0.9.0). Retrieved from https://CRAN.R-project.org/package=spocc [9] Condamine, F.L., Sperling, F.A.H., Wahlberg, N., et al., 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267-277 [10] Ding, B.Y., 2010. Flora of Tianmushan (4 Volumes)[In Chinese]. Zhejiang University Press, Hangzhou. ISBN:9787308071949 [11] Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555 [12] Donoghue, M.J., Smith, S.A., 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. B-Biol. Sci. 359(1450), 1633-1644 [13] Emerson, B.C., Gillespie, R.G., 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619-630 [14] Epskamp, S., 2015. semPlot:unified visualizations of structural equation models. Struct. Equ. Model. 22(3), 474-483 [15] Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1-10 [16] Fick, S.E., Hijmans, R.J., 2017, WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315 [17] Forest, F., Grenyer, R., Rouget, M., et al., 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757-760 [18] Fu, S.X., 2002. Flora of Hubei[In Chinese]. Hubei Science and Technology Press, Wuhan. ISBN:9787535223036 [19] Graham, C.H., Fine, P.V., 2008. Phylogenetic beta diversity:linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265-1277 [20] Graham, C.H., Storch, D., Machac, A., 2018. Phylogenetic scale in ecology and evolution. Global Ecol. Biogeogr. 27, 175-187 [21] Gray, A., 1878. Forest geography and archaeology. Am. J. Sci.93, 183-196 [22] Hardy, O.J., Senterre, B., 2007. Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. J. Ecol. 95, 493-506 [23] Harvey, M.G., Seeholzer, G.F., Smith, B.T., et al., 2017. Positive association between population genetic differentiation and speciation rates in new world birds. Proc. Natl. Acad. Sci. U.S.A. 114, 6328-6333 [24] Hijmans, R.J., 2019. Raster:geographic data analysis and modeling (R package version 2.8-19). Retrieved from https://CRAN.R-project.org/package=raster [25] Hu, H., Ye, J., Liu, B., et al., 2021. Temporal and spatial comparisons of angiosperm diversity between eastern Asia and North America. Natl. Sci. Rev. nwab199 [26] Ives, A.R., Helmus, M.R., 2010. Phylogenetic metrics of community similarity. Am. Nat. 176(5), E128-E142 [27] Jantzen, J.R., Whitten, W.M., Neubig, K.M., et al., 2019. Effects of taxon sampling and tree reconstruction methods on phylodiversity metrics. Ecol. Evol. 9(17), 9479-9499 [28] Jetz, W., Thomas, G.H., Joy, J.B., et al., 2012. The global diversity of birds in space and time. Nature 491, 444-448 [29] Jenkins, J., Motzkin, G., 2009. Harvard Forest Flora Database from 1908 to Present. Harvard Forest Data Archive:HF116 [30] Kembel, S.W., Cowan, P.D., Helmus, M.R., et al., 2010. Picante:R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464 [31] Kerkhoff, A.J., Moriarty, P.E., Weiser, M.D., 2014. The latitudinal species richness gradient in new world woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl. Acad. Sci. U.S.A. 111, 8125-8130 [32] Keyes, O., 2017. Wicket:utilities to handle WKT spatial data (R package version 0.4.0). Retrieved from https://CRAN.R-project.org/package=wicket [33] Kissling, W.D., Eiserhardt, W.L., Baker, W.J., et al., 2012. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl. Acad. Sci. U.S.A. 109, 7379-7384 [34] Kress, W.J., Erickson, D.L., Jones, F.A., et al., 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc. Natl. Acad. Sci. U.S.A. 106, 18621-18626 [35] Li, D., Trotta, L., Marx, H.E., et al., 2019. For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology 100, e02788 [36] Li, D., Dinnage, R., Nell, L.A., et al., 2020. phyr:an R package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455-1463 [37] Li, H.L., 1952. Floristic relationships between eastern Asia and eastern North America. Trans. Am. Phil. Soc. 42, 371-429 [38] Liu, Q.R., 2007. Study on Floristic Geography of Subalpine Vegetation Zone in North China[In Chinese with English Abstract]. Doctoral dissertation, Beijing Normal University [39] Lou, L.H., Jin, S.H., 2000. Spermatophyta flora of gutianshan nature reserve in zhejiang[in Chinese]. J. Beijing For. Univ. 22(5), 33-39 [40] Lozupone C, Knight R., 2005. UniFrac:a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71(12), 8228-8235 [41] Lu, L.M., Mao, L.F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238 [42] Melton, A.E., Chen, S., Zhao, Y., et al., 2020. Genetic insights into the evolution of genera with the eastern Asia-eastern North America floristic disjunction:a transcriptomics analysis. Am. J. Bot. 107, 1736-1748 [43] Michonneau, F., Collins, M., Chamberlain, S.A., 2016. ridigbio:an interface to iDigBio's search API that allows downloading specimen records (R package version 0.3.2). Retrieved from https://github.com/iDigBio/ridigbio [44] Milne, R.I., Abbott, R.J., 2002. The origin and evolution of tertiary relict flora. Adv. Bot. Res. 38, 281-314 [45] Miniat, C.F., Oishi, A.C., Bolstad, P.V., et al., 2021. The Coweeta hydrologic laboratory and the Coweeta long-term ecological research project. Hydrol. Process. 35, e14302 [46] Mishler, B.D., Guralnick, R., Soltis, P.S., et al., 2020. Spatial phylogenetics of the north American flora. J. Systemat. Evol. 58, 393-405 [47] Mishler, B.D., Knerr, N., Gonzalez-Orozco, C.E., et al., 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia. Nat. Commun. 5, 4473 [48] Mittelbach, G.G., Schemske, D.W., Cornell, H.V., et al., 2007. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography. Ecol. Lett. 10, 315-331 [49] Pebesma, E.J., Bivand, R.S., 2005. Classes and methods for spatial data in R. R News, 5. https://cran.r-project.org/doc/Rnews/ [50] Pontarp, M., Bunnefeld, L., Cabral, J.S., et al., 2019. The latitudinal diversity gradient:novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211-223 [51] QGIS Development Team, 2019. QGIS geographic information system. Open source geospatial foundation project. http://qgis.osgeo.org [52] Qian, H., 2002. Floristic relationships between eastern Asia and north America:test of gray's hypothesis. Am. Nat. 160, 317-332 [53] Qian, H., Ricklefs, R.E., 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180-182 [54] Qian, H., Ricklefs, R.E., 2004. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 92, 253-265 [55] Qian, H., Wiens, J.J., Zhang, J., et al., 2015. Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. Ecography 38, 241-250 [56] Qian, H., Jin, Y., Ricklefs, R.E., 2017. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proc. Natl. Acad. Sci. U.S.A. 114, 11452-11457 [57] R Core Team., 2018. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ [58] Ramm, T., Cantalapiedra, J.L., Wagner, P., et al., 2018. Divergent trends in functional and phylogenetic structure in reptile communities across Africa. Nat. Commun., 9, 4697 [59] Rao, M., Steinbauer, M.J., Xiang, X., et al., 2018. Environmental and evolutionary drivers of diversity patterns in the tea family (Theaceae s. s.) across China. Ecol. Evol. 8, 11663-11676 [60] Rosenzweig, M.L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge [61] Rosseel, Y., 2012. Lavaan:an R package for structural equation modeling. J. Stat. Software 48(2), 1-36 [62] Sanmartin, I., Enghoff, H., Ronquist, F., 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Bot. J. Linn. Soc. 73(4), 345-390 [63] Shrestha, N., Wang, Z., Su, X., et al., 2018. Global patterns of Rhododendron diversity:the role of evolutionary time and diversification rates. Global Ecol. Biogeogr. 27, 913-924 [64] Smith, S.A., Brown J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314 [65] Speed, J.D., Skjelbred, I.A., Barrio, I.C., et al., 2019. Trophic interactions and abiotic factors drive functional and phylogenetic structure of vertebrate herbivore communities across the Arctic tundra biome. Ecography 42, 1152-1163 [66] Spongberg, S.A., Boufford, D.E., 1983. Eastern Asian-eastern North American phytogeographical relationships-a history from the time of Linnaeus to the twentieth century. Ann. Mo. Bot. Gard. 70, 423-439 [67] Sun, M., Folk, R., Gitzendanner, M.A., et al., 2020. Estimating rates and patterns of diversification with incomplete sampling:a case study in the rosids. Am. J. Bot. 107(6), 895-909 [68] Thuiller, W., Lavergne, S., Roquet, C., et al., 2011. Consequences of climate change on the tree of life in Europe. Nature 470, 531-534 [69] Tiffney, B.H., Manchester, S.R., 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary. Int. J. Plant Sci. 162, S3-S17 [70] Title, P.O., Rabosky, D.L., 2019. Tip rates, phylogenies and diversification:what are we estimating, and how good are the estimates?. Methods Ecol. Evol. 10, 821-834 [71] Vamosi, S.M., Heard, S.B., Vamosi, J.C., et al., 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572-592 [72] Wang, S., Chen, A., Fang, J., et al., 2013. Why abundant tropical tree species are phylogenetically old. Proc. Natl. Acad. Sci. U.S.A. 110, 16039-16043 [73] Wang, Z., Fang, J., Tang, Z., et al., 2010. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B-Biol. Sci. 278, 2122-2132 [74] Webb, C.O., Ackerly, D.D., Kembel, S.W., 2008. Phylocom:software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098-2100 [75] Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities:an example for rain forest trees. Am. Nat. 156, 145-155 [76] Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475-505 [77] Wen, J., 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu. Rev. Ecol. Evol. Syst. 30, 421-455 [78] Wen, J., Ickert-Bond, S., Nie, Z.L., et al., 2010. Timing and modes of evolution of eastern Asian-North American biogeographic disjunctions in seed plants. In Darwin's Heritage Today:Proceedings of the Darwin 200 Beijing International Conference (pp:252-269). Higher Education Press, Beijing [79] Wiens, J.J., Ackerly, D.D., Allen, A.P., et al., 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13(10), 1310-1324 [80] Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19(12), 639-644 [81] Wolfe, J.A., 1975. Some aspects of plant geography of the northern hemisphere during the late Cretaceous and Tertiary. Ann. Mo. Bot. Gard. 62, 264-279 [82] Wu, C.Y., 1998. Delineation and unique features of the Sino-Japanese floristic region. Bull. Univ. Mus. Univ. Tokyo 37, 1-11 [83] Xiang, Q.Y., Zhang, W.H., Ricklefs, R.E., et al., 2004. Regional differences in rates of plant speciation and molecular evolution:a comparison between eastern Asia and eastern North America. Evolution 58, 2175-2184 [84] Yin, X., Jarvie, S., Guo, W.Y., et al., 2021. Niche overlap and divergence times support niche conservatism in eastern Asia-eastern North America disjunct plants. Global Ecol. Biogeogr. 30, 1990-2003 [85] Ying, T., Boufford, D., 1998. Phytogeography of the Qinling Mountains and a comparison with the flora and vegetation of Japan. Bull. Univ. Mus. Univ. Tokyo 37, 1-29 [86] Yang, T., Tedersoo, L., Soltis, P.S., et al., 2019. Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. ISME J. 13(3), 686-697 [87] Zhang, K., Baskin, J.M., Baskin, C.C., et al., 2015. Lack of divergence in seed ecology of two Amphicarpaea (Fabaceae) species disjunct between eastern Asia and eastern North America. Am. J. Bot. 102(6), 860-869 [88] Zhou, Y., 2010. Plant Resources of Changbai Mountain[In Chinese]. China Forestry Publishing House, Beijing. ISBN:978750385644 |
[1] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China [J]. Plant Diversity, 2023, 45(03): 284-301. |
[2] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[3] | Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems [J]. Plant Diversity, 2022, 44(03): 231-242. |
[4] | Hong Qian, Yi Jin. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? [J]. Plant Diversity, 2021, 43(04): 255-263. |
[5] | SONG Fu-Qiang-, ZIAO Jun-Bin-, ZHANG Yi-Ping-, XU Zai-Fu-, XIAO Lai-Yun. Effects of the Regional Climate Change on the Plant Growth Trend in Xishuangbanna [J]. Plant Diversity, 2010, 32(6): 547-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||