Plant Diversity ›› 2022, Vol. 44 ›› Issue (04): 417-427.DOI: 10.1016/j.pld.2021.12.001
• Articles • Previous Articles
Shiming Denga,b, Qiang Xiaoa, Cigui Xua, Jian Honga, Zhijun Denga, Dan Jianga, Shijia Luoa
Received:
2021-08-17
Revised:
2021-11-20
Online:
2022-07-25
Published:
2022-08-13
Contact:
Shijia Luo,E-mail:1988002@humzu.edu.cn
Supported by:
Shiming Deng, Qiang Xiao, Cigui Xu, Jian Hong, Zhijun Deng, Dan Jiang, Shijia Luo. Metabolome profiling of stratified seeds provides insight into the regulation of dormancy in Davidia involucrata[J]. Plant Diversity, 2022, 44(04): 417-427.
Add to citation manager EndNote|Ris|BibTeX
Ali, F., Qanmber, G., Li, F., et al., 2021. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. https://doi.org/10.1016/j.jare.2021.03. 011. Ali Reza Einali, H.R.S., 2007. Alleviation of dormancy in walnut kernels. Tree Physiol. 27, 519-525. Apte, P.v., Laloraya, M.M., 1982. Inhibitory action of phenolic compounds on abscisic acid-induced abscission. J. Exp. Bot. 33, 826-830. https://doi.org/10.1093/jxb/ 33.4.826. Arc, E., Chibani, K., Grappin, P., et al., 2012. Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release. J. Proteome Res. 11, 5418-5432. https://doi.org/10.1021/pr3006815. Bi, B., Tang, J., Han, S., et al., 2017. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. BMC Plant Biol. 17. https://doi.org/10.1186/s12870-017-1048-9. Brady, S.M., Sarkar, S.F., Bonetta, D., et al., 2003. The ABSCISIC ACID INSENSITIVE 3(ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34, 67-75. https://doi.org/10.1046/j.1365-313X.2003.01707.x. Cadman, C.S.C., Toorop, P.E., Hilhorst, H.W.M., et al., 2006. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46, 805-822. https://doi.org/10.1111/j.1365-313X.2006.02738.x. Chen, Z., Cao, X., Niu, J., 2021. Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS One 16, e0250926. https://doi.org/10.1371/JOURNAL.PONE.0250926. Cornelius, S., Witz, S., Rolletschek, H., et al., 2011. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds. J. Exp. Bot. 62, 5623-5632. https://doi.org/10.1093/jxb/err251. Das, A., Kim, D.W., Khadka, P., et al., 2017. Unraveling key metabolomic alterations in wheat embryos derived from freshly harvested and water-imbibed seeds of two wheat cultivars with contrasting dormancy status. Front. Plant Sci. 8, 1203. https://doi.org/10.3389/fpls.2017.01203. Debeaujon, I., Léon-Kloosterziel, K.M., Koornneef, M., 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122, 403-413. https://doi.org/10.1104/pp.122.2.403. Debeaujon, I., Nesi, N., Perez, P., et al., 2003. Proanthocyanidin-accumulating cells in arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15, 2514-2531. https://doi.org/10.1105/tpc.014043. Downie, B., Bewley, J.D., 2000. Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol. Plantarum 110, 1-12. https://doi.org/10.1034/j.1399-3054.2000.110101.x. El-Araby, M.M., Moustafa, S.M.A., Ismail, A.I., et al., 2006. Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein patterns and anatomical seed features. Acta Agron. Hung. 54, 441-457. https://doi.org/10.1556/AAgr.54.2006.4.7. Finch-Savage, W.E., Leubner-Metzger, G., 2006. Seed dormancy and the control of germination. New Phytol. 171, 501-523. https://doi.org/10.1111/j.1469-8137.2006.01787.x. Gang, W., Shan-heng, H., Hong-chang, W., et al., 2004. Living characteristics of rare and endangered species dDavidia involucrata. J. For. Res. 15, 39-44. https://doi.org/10.1007/bf02858008. Gao, F., Jordan, M.C., Ayele, B.T., 2012. Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.). Plant Biotechnol. J. 10, 465-476. https://doi.org/10.1111/j.1467-7652.2012.00682.x. Gianinetti, A., Finocchiaro, F., Bagnaresi, P., et al., 2018. Seed dormancy involves a transcriptional program that supports early plastid functionality during imbibition. Plants 7, 35. https://doi.org/10.3390/plants7020035. Hance, B.A., Bevington, J.M., 1992. Changes in protein synthesis during stratification and dormancy release in embryos of sugar maple (Acer saccharum). Physiol. Plantarum 86, 365-371. https://doi.org/10.1111/j.1399-3054.1992.tb01332.x. Guillamón, J.G., Prudencio, Á.S., Yuste, J.E., et al., 2020. Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. Hortic. Res. 7, 1-13. https://doi.org/10.1038/s41438-020-00427-5. Han, C., Yang, P., 2015. Studies on the molecular mechanisms of seed germination. Proteomics 15, 1671-1679. https://doi.org/10.1002/pmic.201400375. He, Z.C., Li, J.Q., Wang, H.C., 2004. Karyomorphology of Davidia involucrata and Camptotheca acuminata, with special reference to their systematic positions. Bot. J. Linn. Soc. 144, 193-198. https://doi.org/10.1111/j.1095-8339.2003.00241.x. Hilhorst, H.W.M., 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5, 61-73. https://doi.org/10.1017/S0960258500002634. Jaganathan, G.K., 2020. Defining correct dormancy class matters : morphological and morphophysiological dormancy in Arecaceae. Ann. For. Sci. 77, 100. https://doi.org/10.1007/s13595-020-01010-7. Jiang, Z., Xu, G., Jing, Y., et al., 2016. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat. Commun. 7, 1-10. https://doi.org/10.1038/ncomms12377. Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of genes and Genomes. Nucleic Acids Res. 28, 27-30. https://doi.org/10.1093/nar/28.1.27. Kong, D., Ju, C., Parihar, A., et al., 2015. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol. 167, 1630-1642. https://doi.org/10.1104/pp.114.251298. Kucera, B., Cohn, M.A., Leubner-Metzger, G., 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15, 281-307. https://doi.org/10.1079/ssr2005218. Li, A., Li, S., Wu, X., et al., 2016a. Effect of light intensity on leaf photosynthetic characteristics and accumulation of flavonoids in Lithocarpus litseifolius (Hance) Chun. (Fagaceae). Open J. For. 6, 445-459. https://doi.org/10.4236/ojf.2016.65034. Li, Y.X., Chen, L., Juan, L., et al., 2002. Suppression subtractive hybridization cloning of cDNAs of differentially expressed genes in dovetree (Davidia involucrata) bracts. Plant Mol. Biol. Rep. 20, 231-238. https://doi.org/10.1007/BF02782458. Li, M., Dong, X., Peng, J., et al., 2016b. De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree(Davidia involucrata Baill.). BMC Plant Biol. 16, 82. https://doi.org/10.1186/s12870-016-0772-x. Li, B., Zhang, P., Wang, F., et al., 2021. Integrated analysis of the transcriptome and metabolome revealed candidate genes involved in ga3-induced dormancy release in Leymus chinensis seeds. Int. J. Mol. Sci. 22. https://doi.org/10.3390/ijms22084161. Liu, R., Lu, J., Xing, J., Du, M., Wang, M., Zhang, L., Li, Y., Zhang, C., Wu, Y., 2021a. Transcriptome and metabolome analyses revealing the potential mechanism of seed germination in Polygonatum cyrtonema. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-91598-1. Liu, P.P., Montgomery, T.A., Fahlgren, N., et al., 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 52, 133-146. https://doi.org/10.1111/j.1365-313X.2007.03218.x. Liu, S., Yang, L., Li, Jialong, et al., 2021b. FHY3 interacts with phytochrome B and regulates seed dormancy and germination. Plant Physiol. https://doi.org/10.1093/plphys/kiab147. Laloraya, M.M., Nozzolillo, C., Purohit, S., et al., 1986. Reversal of abscisic acidinduced stomatal closure by trans-cinnamic and p-coumaric acid. Plant Physiol. 81, 253-258. https://doi.org/10.1104/pp.81.1.253. Liu, X., Zhang, H., Zhao, Y., et al., 2013. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110, 15485-15490. https://doi.org/10.1073/pnas.1304651110. Ma, Z., Bykova, N.v., Igamberdiev, A.U., 2017. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J. https://doi.org/10.1016/j.cj.2017.08.007. Mares, D.J., Mrva, K., Cheong, J., et al., 2021. Dormancy and dormancy release in white-grained wheat (Triticum aestivum L.). Planta 253. https://doi.org/10.1007/s00425-020-03518-8. Mesihovic, A., Iannacone, R., Firon, N., Fragkostefanakis, S., 2016. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod. https://doi.org/10.1007/s00497-016-0281-y. Mochida, K., Shinozaki, K., 2011. Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcr153. Mock, H.P., Strack, D., 1993. Energetics of the uridine 50-diphosphoglucose:hydroxycinnamic acid acyl-glucosyltransferase reaction. Phytochemistry 32, 575-579. https://doi.org/10.1016/S0031-9422(00)95139-2. Moffatt, B.A., Ashihara, H., 2002. Purine and pyrimidine nucleotide synthesis and metabolism. The Arabidopsis Book/American Society of Plant Biologists 1, e0018. https://doi.org/10.1199/TAB.0018. Noland, T.L., Brad Murphy, J., 1986. Protein synthesis and aminopeptidase activity in dormant sugar pine seeds during stratification and warm incubation. J. Plant Physiol. 124, 1-10. https://doi.org/10.1016/S0176-1617(86)80172-9. Park, C.J., Seo, Y.S., 2015. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. https://doi.org/10.5423/PPJ.RW.08.2015.0150. Qi, G., Li, J.T., Ruan, Q.P., et al., 2009. An optimised, small-scale preparation of highquality RNA from dry seeds of Davidia involucrata. Phytochem. Anal. 20, 139-142. https://doi.org/10.1002/pca.1108. Qiu, X.M., Sun, Y.Y., Ye, X.Y., et al., 2020. Signaling role of glutamate in plants. Front. Plant Sci. 10, 1743. https://doi.org/10.3389/fpls.2019.01743. Roman, T.L., Galperin,M.Y.,Natale,D.A.,etal.,2000.The COG database:a tool for genomescale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33-36. Song, Y., Zhu, J., 2019. The roles of metabolic pathways in maintaining primary dormancy of Pinus koraiensis seeds. BMC Plant Biol. 19. https://doi.org/10.1186/s12870-019-2167-2. Shimozu, Y., Kimura, Y., Esumi, A., et al., 2017. Ellagitannins of Davidia involucrata. I. Structure of davicratinic acid a and effects of davidia tannins on drug-resistant bacteria and human oral squamous cell carcinomas. Molecules 22. https://doi.org/10.3390/molecules22030470. Song, Y., Zhu, J.J., 2016. How does moist cold stratification under field conditions affect the dormancy release of Korean pine seed (Pinus koraiensis)? Seed Sci. Technol. 44, 27-42. https://doi.org/10.15258/SST.2016.44.1.06. Strack, D., 1981. Sinapine as a supply of choline for the biosynthesis of phosphatidylcholine in Raphanus sativus seedlings. Z. Naturforsch. C 36, 215-221. https://doi.org/10.1515/znc-1981-3-407. Su, Z.X., Zhang, S.L., 1999. The reproductive phenology and the influencing factors of Davidia involucrata population. J. Coll. Sci. Teach. 20, 313-318. Sun, J.F., Gong, Y.B., Renner, S.S., et al., 2008. Multifunctional bracts in the dove tree Davidia involucrata (Nyssaceae: Cornales): rain protection and pollinator attraction. Am. Nat. 171, 119-124. https://doi.org/10.1086/523953. Szczotka, Z., Pawłowski, T., Krawiarz, K., 2003. Proteins and polyamines during dormancy breaking of European beech (Fagus sylvatica L.) seeds. Acta Physiol. Plant. 25, 423-435. https://doi.org/10.1007/s11738-003-0025-0. Tang, C.Q., Dong, Y.F., Herrando-Moraira, S., et al., 2017. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China. Sci. Rep. 7. https://doi.org/10.1038/srep43822. Wahid, A., Gelani, S., Ashraf, M., et al., 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 62, 199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011. Weitbrecht, K., Mü Ller, K., Leubner-Metzger, G., 2011. First off the mark: early seed germination. J. Exp. Bot. 62, 3289-3309. https://doi.org/10.1093/jxb/err030. Yang, Y.G., Lv, W.T., Li, M.J., et al., 2013. Maize membrane-bound transcription factor zmbzip17 is a key regulator in the cross-talk of er quality control and aba signaling. Plant Cell Physiol. 54, 2020-2033. https://doi.org/10.1093/pcp/pct142. Young, M.D., Wakefield, M.J., Smyth, G.K., et al., 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11. https://doi.org/10.1186/gb-2010-11-2-r14. Zhang, J., L, J., Z, B., et al., 1995. Research on the protection of Davidia involucrata populations, a rare and endangered plant endemic to China. J. Beijing For. Univ. 17, 25-30. Zhao, J., Li, W., Sun, S., et al., 2021. The rice small auxin-up rna gene ossaur33 regulates seed vigor via sugar pathway during early seed germination. Int. J. Mol. Sci. 22, 1-17. https://doi.org/10.3390/ijms22041562. Zheng, X., Hayashibe, E., Ashihara, H., 2005. Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. J. Exp. Bot. 56, 1615-1623. https://doi.org/10.1093/JXB/ERI156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||