Plant Diversity ›› 2021, Vol. 43 ›› Issue (05): 409-419.DOI: 10.1016/j.pld.2021.01.002
• Articles • Previous Articles Next Articles
Jia-Xin Yanga,b,c, Shuai Penga,b,c, Jun-Jie Wanga,b,c, Shi-Xiong Dinga,b,d, Yan Wanga,b,c, Jing Tiana,b, Han Yange, Guang-Wan Hua,b, Qing-Feng Wanga,b
Received:
2020-11-11
Revised:
2021-01-02
Online:
2021-10-25
Published:
2021-11-18
Contact:
Guang-Wan Hu
Supported by:
Jia-Xin Yang, Shuai Peng, Jun-Jie Wang, Shi-Xiong Ding, Yan Wang, Jing Tian, Han Yang, Guang-Wan Hu, Qing-Feng Wang. Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae: Epidendroideae) from SW China[J]. Plant Diversity, 2021, 43(05): 409-419.
Add to citation manager EndNote|Ris|BibTeX
Bankevich, A., Nurk, S., Antipov, D., et al., 2012. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.1089/cmb.2012.0021. Barrett, C.F., Davis, J.I., 2012. The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am. J. Bot. 99, 1513-1523. https://doi.org/10.3732/ajb.1200256. Barrett, C.F., Freudenstein, J.V., Jeff, L., et al., 2014. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol. Biol. Evol. 31, 3095-3112. https://doi.org/10.1093/molbev/msu252. Camacho, C., Coulouris, G., Avagyan, V., et al., 2009. BLAST+:architecture and applications. BMC Bioinf. 10, 421. https://doi.org/10.1186/1471-2105-10-421. Chase, M.W., Cameron, K.M., Freudenstein, J.V., et al., 2015. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177, 151-174. https://doi.org/10.1111/boj.12234. Chen, X.Q., Gale, S.W., Cribb, P.J., 2009. Corallorhiza. In:Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 25. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press, pp. 252-253. Christenhusz, M.J.M., Byng, J.W., 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201-217. https://doi.org/10.11646/phytotaxa.261.3.1. Darling, A.C.E., Mau, B., Blattner, F.R., et al., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403. https://doi.org/10.1101/gr.2289704. Freudenstein, J.V., 1997. A monograph of Corallorhiza (Orchidaceae). Harv. Pap. Bot. 1, 5-51. https://doi.org/10.2307/41761525. Freudenstein, J.V., 1999. A new species of Corallorhiza (Orchidaceae) from West Virginia. U.S.A. Novon 9, 511-513. https://doi.org/10.2307/3392151. Freudenstein, J.V., Senyo, D.M., 2008. Relationships and evolution of matK in a group of leafless orchids (Corallorhiza and Corallorhizinae; Orchidaceae:Epidendroideae). Am. J. Bot. 95, 498-505. https://doi.org/10.3732/ajb.95.4.498. Freudenstein, J.V., Yukawa, T., Luo, Y.B., 2017. A reanalysis of relationships among Calypsoinae (Orchidaceae:Epidendroideae):floral and vegetative evolution and the placement of Yoania. Syst. Bot. 42, 17-25. https://doi.org/10.1600/036364417x694944. Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. https://doi.org/10.1186/s13059-020-02154-5. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. https://doi.org/10.1038/nmeth.4285. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199. Khayi, S., Gaboun, F., Pirro, S., et al., 2020. Complete chloroplast genome of Argania spinosa:structural organization and phylogenetic relationships in sapotaceae. Plants 9. https://doi.org/10.3390/plants9101354. Kim, Y.K., Jo, S., Cheon, S.H., et al., 2020. Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences. Fron. Plant Sci. 11, 22. https://doi.org/10.3389/fpls.2020.00022. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923. Lee, S.Y., Meng, K., Wang, H., et al., 2020. Severe plastid genome size reduction in a mycoheterotrophic orchid, Danxiaorchis singchiana, reveals heavy gene loss and gene relocations. Plants 9, 521. https://doi.org/10.3390/plants9040521. Li, Z.H., Jiang, Y., Ma, X., et al., 2020. Plastid genome evolution in the subtribe Calypsoinae (Epidendroideae, Orchidaceae). Genome Biol. Evol. 12, 867-870. https://doi.org/10.1093/gbe/evaa091. Lohse, M., Drechsel, O., Bock, R., 2007. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267-274. https://doi.org/10.1007/s00294-007-0161-y. Macdougal, D.T.,Dufrenoy,J.,1944. Mycorrhizalsymbiosis in Aplectrum,Corallorhizaand Pinus. Plant Physiol. (Wash. D C) 19, 440-465. https://doi.org/10.2307/4257795. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 (1), 268-274. https://doi.org/10.1093/molbev/msu300. Pearce, N., Cribb, P., 1997. A revision of the genus Oreorchis (Orchidaceae). Edinb. J. Bot. 54, 289-328. https://doi.org/10.1017/S0960428600004145. Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. https://doi.org/10.1186/s13007-019-0435-7. Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2:efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029. Suetsugu, K., Haraguchi, T.F., Tanabe, A.S., et al., 2020. Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Mycorrhiza. https://doi.org/10.1007/s00572-020-00999-z. Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. https://doi.org/10.1080/10635150701472164. Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. https://doi.org/10.1093/bioinformatics/btv383. Wu, L.W., Nie, L.P., Xu, Z.C., et al., 2020. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia section Moutan species(Paeoniaceae). Front. Genet. 11 https://doi.org/10.3389/fgene.2020.00980. Yukawa, T., Chung, S.W., Luo, Y.B., et al., 2003. Reappraisal of Kitigorchis (Orchidaceae). Bot. Bull. Acad. Sin. (Taipei) 44, 345-351. Zhai, J.W., Zhang, G.Q., Chen, L.J., et al., 2013. A new orchid genus, Danxiaorchis, and phylogenetic analysis of the tribe Calypsoeae. PLoS One 8, e60371. https://doi.org/10.1371/journal.pone.0060371. Zhang, D., Gao, F.L., Jakovlic, I., et al., 2020. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. https://doi.org/10.1111/1755-0998.13096. Zhu, B., Feng, Q., Yu, J., et al., 2020. Chloroplast genome features of an important medicinal and edible plant:Houttuynia cordata (Saururaceae). PLoS One 15, e0239823. https://doi.org/10.1371/journal.pone.0239823. Zimmer, K., Meyer, C., Gebauer, G., 2008. The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytol. 178, 395-400.https://doi.org/10.1111/j.1469-8137.2007.02362.x. |
[1] | Hong Qian, Yi Jin. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? [J]. Plant Diversity, 2021, 43(04): 255-263. |
[2] | Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers [J]. Plant Diversity, 2021, 43(04): 281-291. |
[3] | Gang Yao, Bine Xue, Kun Liu, Yuling Li, Jiuxiang Huang, Junwen Zhai. Phylogenetic estimation and morphological evolution of Alsineae (Caryophyllaceae) shed new insight into the taxonomic status of the genus Pseudocerastium [J]. Plant Diversity, 2021, 43(04): 299-307. |
[4] | Bibo Yang, Liangda Li, Jianquan Liu, Lushui Zhang. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(03): 198-205. |
[5] | Ziyoviddin Yusupov, Tao Deng, Sergei Volis, Furkat Khassanov, Dilmurod Makhmudjanov, Komiljon Tojibaev, Hang Sun. Phylogenomics of Allium section Cepa (Amaryllidaceae) provides new insights on domestication of onion [J]. Plant Diversity, 2021, 43(02): 102-110. |
[6] | Luis Fernando Cuellar-Garrido, María Elena Siqueiros-Delgado. Hidden in plain sight: Morphological and phylogenetic evidence for Bouteloua arizonica, a species distinct from Bouteloua aristidoides (Poaceae, Chloridoideae) [J]. Plant Diversity, 2021, 43(02): 125-133. |
[7] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae) [J]. Plant Diversity, 2021, 43(01): 1-14. |
[8] | Hong Wu, Peng-Fei Ma, Hong-Tao Li, Guo-Xiong Hu, De-Zhu Li. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae) [J]. Plant Diversity, 2021, 43(01): 15-26. |
[9] | Han-Rui Bai, Oyetola Oyebanji, Rong Zhang, Ting-Shuang Yi. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae) [J]. Plant Diversity, 2021, 43(01): 27-34. |
[10] | Luxian Liu, Yonghua Zhang, Pan Li. Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data [J]. Plant Diversity, 2021, 43(01): 43-53. |
[11] | Nan Lin, Xu Zhang, Tao Deng, Jianwen Zhang, Aiping Meng, Hengchang Wang, Hang Sun, Yanxia Sun. Plastome sequencing of Myripnois dioica and comparison within Asteraceae [J]. Plant Diversity, 2019, 41(05): 315-322. |
[12] | Srinivasa R. Chaluvadi, Porter Young, Kentrez Thompson, Bochra Amina Bahri, Bhavesh Gajera, Subhash Narayanan, Robert Krueger, Jeffrey L. Bennetzen. Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm (Phoenix dactylifera) and related species [J]. Plant Diversity, 2019, 41(05): 330-339. |
[13] | Cen Guo, Zhen-Hua Guo, De-Zhu Li. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae: Bambusoideae) [J]. Plant Diversity, 2019, 41(04): 213-219. |
[14] | Changkun Liu, Zhenyan Yang, Lifang Yang, Junbo Yang, Yunheng Ji. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae) [J]. Plant Diversity, 2018, 40(06): 265-276. |
[15] | Liuqing Ma, Pengfei Ma, Dezhu Li. The first complete plastid genome of Burmannia disticha L. from the mycoheterotrophic monocot family Burmanniaceae [J]. Plant Diversity, 2018, 40(05): 232-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||