Plant Diversity ›› 2023, Vol. 45 ›› Issue (04): 409-421.DOI: 10.1016/j.pld.2023.03.004
• Articles • Previous Articles Next Articles
Xue-Min Xua, Dan-Hui Liub, Shi-Xin Zhua, Zhen-Long Wanga, Zhen Weia, Quan-Ru Liub
Received:
2022-07-27
Revised:
2023-03-01
Online:
2023-07-25
Published:
2023-08-21
Contact:
Zhen Wei,E-mail:weizhen@zzu.edu.cn
Supported by:
Xue-Min Xu, Dan-Hui Liu, Shi-Xin Zhu, Zhen-Long Wang, Zhen Wei, Quan-Ru Liu. Phylogeny of Trigonotis in China—with a special reference to its nutlet morphology and plastid genome[J]. Plant Diversity, 2023, 45(04): 409-421.
Add to citation manager EndNote|Ris|BibTeX
[1] Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image processing with image J. Biophotonics Intern. 11, 36-42. [2] Akcin, O.E., 2007. Nutlets micromorphology of some Onosoma L. (Boraginaceae) species from Turkey. Biologia 62, 684-689. https://doi.org/10.2478/s11756-007-0126-0. [3] Al-Shehbaz, I.A., 1991. The genera of Boraginaceae in the southeastern United States. J. Arnold Arbor. Supplementary Series 1, 1-169. https://doi.org/10.5962/p.315943. [4] Amiryousefi, A., Hyvonen, J., Poczai, P., 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031. https://doi.org/10.1093/bioinformatics/bty220. [5] Binzet, R., Akcin, O.E., 2009. Nutlet size, shape and surface ornamentation in 14 Onosma species (Boraginaceae). Acta Bot. Croat. 68, 117-126. [6] Chacon, J., Luebert, F., Hilger, H.H., et al., 2016. The borage family (Boraginaceae s.str.): a revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon 65, 523-546. https://doi.org/10.12705/653.6. [7] Chen, Q., Zhang, D., 2019. The complete chloroplast genome sequence of Onosma paniculatum Bur. et Franch. (Boraginaceae), a medicinal plant in Yunnan and its adjacent regions. Mitochondrial DNA Part B-Resour. 4, 3330-3332. https://doi.org/10.1080/23802359.2019.1673230. [8] Chen, Y., Chen, Y., Shi, C., et al., 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, 1-6. https://doi.org/10.1093/gigascience/gix120. [9] Cohen, J.I., 2014. A phylogenetic analysis of morphological and molecular characters of Boraginaceae: evolutionary relationships, taxonomy, and patterns of character evolution. Cladistics 30, 139-169. https://doi.org/10.1111/cla.12036. [10] Daniell, H., Lin, C.S., Yu, M., et al., 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134. https://doi.org/10.1186/s13059-016-1004-2. [11] Dong, W., Xu, C., Cheng, T., et al., 2013. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol. Evol. 5, 989-997. https://doi.org/10.1093/gbe/evt063. [12] Dong, W.P., Liu, J., Yu, J., et al., 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7, e35071. https://doi.org/10.1371/journal.pone.0035071. [13] Doyle, J.J., Doyle, J.L., Doyle, J.A., et al., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [14] Fior, S., Li, M., Oxelman, B., et al., 2013. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions. New Phytol. 198, 579-592. https://doi.org/10.1111/nph.12163. [15] Frazer, K.A., Pachter, L., Poliakov, A., et al., 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279. https://doi.org/10.1093/nar/gkh458. [16] Greiner, S., Lehwark, P., Bock, R., 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59-W64. https://doi.org/10.1093/nar/gkz238. [17] Guo, X., Wang, X., Wang, Q., et al., 2020. The complete chloroplast genome sequence of Borago officinalis Linn. (Boraginaceae) and its phylogenetic analysis. Mitochondrial DNA Part B-Resour. 5, 1461-1462. https://doi.org/10.1080/23802359.2020.1741467. [18] Hao, J.C., Yan, R.Y., Liu, Q.R., 2017. Trigonotis jiaochengensis sp. nov. (Boraginaceae) from shanxi, China. Nord. J. Bot., Le 35, 63-68. https://doi.org/10.1111/njb.01216. [19] He, Y., Xu, X.M., Liu, Q.R., 2021. The complete chloroplast genome of Onosma fuyunensis Y. He & Q.R. Liu and its phylogenetic analysis. Mitochondrial DNA Part B-Resour. 6, 3142-3143. https://doi.org/10.1080/23802359.2020.1861567. [20] Huo, Y., Gao, L., Liu, B., et al., 2019. Complete chloroplast genome sequences of four Allium species: comparative and phylogenetic analyses. Sci. Rep. 9, 12250. https://doi.org/10.1038/s41598-019-48708-x. [21] Ikeda, K., Sato, S., Matoba, H., et al., 2013. Molecular cytogenetic analysis of the critically endangered Trigonotis radicans var. radicans and var. sericea and allied species in Japan. Cytologia 78, 297-303. https://doi.org/10.1508/cytologia.78.297. [22] Jansen, R.K., Wojciechowski, M.F., Sanniyasi, E., et al., 2008. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol. Phylogenet. Evol. 48, 1204-1217. https://doi.org/10.1016/j.ympev.2008.06.013. [23] Jansen, R.K., Ruhlman, T.A., 2012. Plastid genomes of seed plants. In: Bock, R., Knoop, V. (Eds.), Genomics of Chloroplasts and Mitochondria. Springer, Dordrecht, pp. 103-126. https://doi.org/10.1007/978-94-007-2920-9_5. [24] Jiang, W., Tan, W., Gao, H., et al., 2020. Transcriptome and complete chloroplast genome of Glycyrrhiza inflata and comparative analyses with the other two licorice species. Genomics 112, 4179-4188. https://doi.org/10.1016/j.ygeno.2020.07.007. [25] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. https://doi.org/10.1186/s13059-020-02154-5. [26] Johnston, I.M., 1937. Studies in the Boraginaceae, Ⅻ. J. Arnold Arbor. 18, 1-25. https://doi.org/10.5962/p.185358. [27] Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160-1166. https://doi.org/10.1093/bib/bbx108. [28] Kung, H-W., Wang, W-T., 1989. Boraginaceae. In: Flora Reipublicae Popularis Sinica, vol. 64. Beijing: Science Press, pp. 177-207. [29] Langstrom, E., Chase, M.W., 2002. Tribes of Boraginoideae (Boraginaceae) and placement of Antiphytum, Echiochilon, Ogastemma and Sericostoma: a phylogenetic analysis based on atpB plastid DNA sequence data. Plant Systemat. Evol. 234, 137-153. https://doi.org/10.1007/s00606-002-0195-z. [30] Leister, D., 2003. Chloroplast research in the genomic age. Trends Genet. 19, 47-56. https://doi.org/10.1016/s0168-9525(02)00003-3. [31] Li, L., Hu, Y., He, M., et al., 2021. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genom. 22, 138. https://doi.org/10.1186/s12864-021-07427-2. [32] Li, X., Yang, Y., Henry, R.J., et al., 2015. Plant DNA barcoding: from gene to genome. Biol. Rev. Camb. Phil. Soc. 90, 157-166. https://doi.org/10.1111/brv.12104. [33] Liu, E., Yang, C., Liu, J., et al., 2019a. Comparative analysis of complete chloroplast genome sequences of four major Amorphophallus species. Sci. Rep. 9, 809. https://doi.org/10.1038/s41598-018-37456-z. [34] Liu, H., Su, Z., Yu, S., et al., 2019b. Genome comparison reveals mutation hotspots in the chloroplast genome and phylogenetic relationships of Ormosia species. BioMed Res. Int. e7265030. https://doi.org/10.1155/2019/7265030. [35] Lowe, T.M., Chan, P.P., 2016. TRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, 54-57. https://doi.org/10.1093/nar/gkw413. [36] Menezes, A.P.A., Resende-Moreira, L.C., Buzatti, R.S.O., et al., 2018. Chloroplast genomes of Byrsonima species (Malpighiaceae): comparative analysis and screening of high divergence sequences. Sci. Rep. 8, 2210. https://doi.org/10.1038/s41598-018-20189-4. [37] Nazaire, M., Hufford, L., 2012. A broad phylogenetic analysis of Boraginaceae: implications for the relationships of Mertensia. Syst. Bot. 37, 758-783. https://doi.org/10.1600/036364412x648715. [38] Nguyen, L.T., Schmidt, H.A., von Haeseler, A., et al., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. https://doi.org/10.1093/molbev/msu300. [39] Palmer, J.D., 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19, 325-354. https://doi.org/10.1146/annurev.ge.19.120185.001545. [40] Park, I., Yang, S., Song, J.H., et al., 2020. Dissection for floral micromorphology and plastid genome of valuable medicinal Borages Arnebia and Lithospermum (Boraginaceae). Front. Plant Sci. 11, 606463. https://doi.org/10.3389/fpls.2020.606463. [41] Petersen, G., Aagesen, L., Seberg, O., et al., 2011. When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). Cladistics 27, 428-446. https://doi.org/10.1111/j.1096-0031.2011.00347.x. [42] Popov, M.G., 1953. Boraginaceae. In: Shishkin, B.K. (Ed.), Flora of the URSS, vol. 19. Izdatel’stvo Akademii Nauk SSSR, Leningrad, pp. 97-718. [43] Qian, S., Zhang, Y., Lee, S.Y., 2021. Comparative analysis of complete chloroplast genome sequences in Edgeworthia (Thymelaeaceae) and new insights into phylogenetic relationships. Front. Genet. 12, 643552. https://doi.org/10.3389/fgene.2021.643552. [44] Rambaut, A., 2014. Molecular Evolution, Phylogenetics and Epidemiology. http://tree.bio.ed.ac.uk/software/figtree/(accessed May 31, 2019). [45] Rambaut, A., Drummond, A.J., Xie, D., et al., 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. https://doi.org/10.1093/sysbio/syy032. [46] Raubeson, L.A., Peery, R., Chumley, T.W., et al., 2007. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genom. 8, 174. https://doi.org/10.1186/1471-2164-8-174. [47] Riedl, H., 1967. Boraginaceae. In: Rechinger, K.H. (Ed.), Flora Iranica. Akademische Druckund Verlagsanstalt, Graz, pp. 1-281. [48] Rieseberg, L.H., Soltis, D.E., 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Trends Plant Sci. 5, 65-84. [49] Rogalski, M., do Nascimento, V.L., Fraga, H.P., et al., 2015. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, 586. https://doi.org/10.3389/fpls.2015.00586. [50] Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029. [51] Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. https://doi.org/10.1093/molbev/msx248. [52] Smidt, E.C., Paez, M.Z., Vieira, L., et al., 2020. Characterization of sequence variability hotspots in Cranichideae plastomes (Orchidaceae, Orchidoideae). PLoS One 15, e0227991. https://doi.org/10.1371/journal.pone.0227991. [53] Song, Y., Zhang, Y., Xu, J., et al., 2019. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci. Rep. 9, 20401. https://doi.org/10.1038/s41598-019-56727-x. [54] Stover, B.C., Muller, K.F., 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinf. 11, 7. https://doi.org/10.1186/1471-2105-11-7. [55] Sun, J., Sun, R., Liu, H., et al., 2021. Complete chloroplast genome sequencing of ten wild Fragaria species in China provides evidence for phylogenetic evolution of Fragaria. Genomics 113, 1170-1179. https://doi.org/10.1016/j.ygeno.2021.01.027. [56] Takahashi, K., Terai, Y., Nishida, M., et al., 2001. Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol. Biol. Evol. 18, 2057-2066. https://doi.org/10.1093/oxfordjournals.molbev.a003747. [57] Takhtajan, A., 1997. Diversity and Classification of Flowering Plants. New York: Columbia University Press. [58] Tian, S., Lu, P., Zhang, Z., et al., 2021. Chloroplast genome sequence of Chongming lima bean (Phaseolus lunatus L.) and comparative analyses with other legume chloroplast genomes. BMC Genom. 22, 194. https://doi.org/10.1186/s12864-021-07467-8. [59] Trinh, N.A., Nguyen, H.T.T., Park, S.J., 2012. Phylogenetic relationships of the Korean Trigonotis Steven (Boraginaceae) based on chloroplast DNA (cpDNA) and nuclear ribosomal markers (nrDNA) region. Korean J. Polar Res. 25, 753-761. https://doi.org/10.7732/kjpr.2012.25.6.753. [60] Twyford, A.D., Ness, R.W., 2017. Strategies for complete plastid genome sequencing. Mol. Ecol. Resour. 17, 858-868. https://doi.org/10.1111/1755-0998.12626. [61] Wang, C.J., 1982. Taxonomic and phytogeographic studies on Chinese species Trigonotis Stev. Acta Bot. Yunnanica 4, 31-45. [62] Wang, W., Messing, J., 2011. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS One 6, e24670. https://doi.org/10.1371/journal.pone.0024670. [63] Wang, W.T., 1980. A revision of the genus Microula (Boraginaceae). Acta Phytotaxon. Sin. 18, 266-282. [64] Wang, W.T., 2007. Trigonotis jinfoshanica, a new species of Boraginaceae from SW China. Guihaia 27, 143-145. [65] Wang, W.T., 2010. New taxa of Boraginaceae from China. Guihaia 30, 429-439. [66] Wang, W.T., 2016. Two new species of Boraginaceae from xizang. Bull. Bot. Res. 36, 321-323. [67] Wang, Y., Wang, S., Liu, Y., et al., 2021. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genom. 22, 103. https://doi.org/10.1186/s12864-021-07394-8. [68] Weigend, M., Gottschling, M., Selvi, F., et al., 2010. Fossil and extant western hemisphere boragineae, and the polyphyly of “Trigonotideae” riedl (Boraginaceae: boraginoideae). Syst. Bot. 35, 409-419. https://doi.org/10.1600/036364410791638423. [69] Weigend, M., Luebert, F., Selvi, F., et al., 2013. Multiple origins for hound's tongues (Cynoglossum L.) and navel seeds (Omphalodes Mill.) - the phylogeny of the borage family (Boraginaceae s.str.). Mol. Phylogenet. Evol. 68, 604-618. https://doi.org/10.1016/j.ympev.2013.04.009. [70] Weigend, M., Selvi, F., Thomas, D.C., et al., 2016. Boraginaceae. In: Kadereit, J.W., Bittrich, V. (Eds.), Flowering Plants. Eudicots. The Families and Genera of Vascular Plants, vol. 14. Springer, Cham, pp. 41-102. [71] Wicke, S., Schneeweiss, G.M., de Pamphilis, C.W., et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 76, 273-297. https://doi.org/10.1007/s11103-011-9762-4. [72] Wortley, A.H., Rudall, P.J., Harris, D.J., et al., 2005. How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst. Biol. 54, 697-709. https://doi.org/10.1080/10635150500221028. [73] Xiong, A.S., Peng, R.H., Zhuang, J., et al., 2009. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol. Adv. 27, 340-347. https://doi.org/10.1016/j.biotechadv.2009.01.012. [74] Xu, X.M., Liu, D.H., He, Y., et al., 2020. Trigonotis motuoensis (Boraginaceae), a new species from Xizang, China. Phytotaxa 461, 233-242. https://doi.org/10.11646/phytotaxa.461.4.1. [75] Yao, M., Li, X., Li, W., et al., 2012. Overview of pharmacological research of Trigonotis stev. J. Anhui Agric. Sci. 40, 5130-5131. https://doi.org/10.13989/j.cnki.0517-6611.2012.09.190. [76] Yu, W.T., Jacques, F.M.B., Chen, S.T., et al., 2012. Nutlet micro-morphology of the genus Microula (Boraginaceae) from the Qinghai-Tibetan plateau, and its systematic implications. Nord. J. Bot. 30, 596-612. https://doi.org/10.1111/j.1756-1051.2011.01336.x. [77] Zhang, D., Gao, F., Jakovlic, I., et al., 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. https://doi.org/10.1111/1755-0998.13096. [78] Zhang, X., Sun, Y., Landis, J.B., et al., 2020. Plastome phylogenomic study of Gentianeae (Gentianaceae): widespread gene tree discordance and its association with evolutionary rate heterogeneity of plastid genes. BMC Plant Biol. 20, 340. https://doi.org/10.1186/s12870-020-02518-w. [79] Zhang, X.F., Landis, J.B., Wang, H.X., et al., 2021. Comparative analysis of chloroplast genome structure and molecular dating in Myrtales. BMC Plant Biol. 21, 219. https://doi.org/10.1186/s12870-021-02985-9. [80] Zhu, G.L., Riedl, H., Kamelin, R., 1995. Boraginaceae. In: Wu, Z-Y., Raven, P.H. (Eds.), Flora of China, vol. 16. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 329-427. |
[1] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China [J]. Plant Diversity, 2023, 45(03): 284-301. |
[2] | Chao Liu, Huan-Huan Chen, Li-Zhou Tang, Phyo Kay Khine, Li-Hong Han, Yu Song, Yun-Hong Tan. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae) [J]. Plant Diversity, 2022, 44(04): 377-388. |
[3] | Kai-Wen Jiang, Rong Zhang, Zhong-Fu Zhang, Bo Pan, Bin Tian. DNA barcoding and molecular phylogeny of Dumasia (Fabaceae: Phaseoleae) reveals a cryptic lineage [J]. Plant Diversity, 2020, 42(05): 376-385. |
[4] | Virginia M. Mwanzia, Ding-Xuan He, Andrew W. Gichira, Yan Li, Boniface K. Ngarega, Mwihaki J. Karichu, Peris W. Kamau, Zhi-Zhong Li. The complete plastome sequences of five Aponogeton species (Aponogetonaceae): Insights into the structural organization and mutational hotspots [J]. Plant Diversity, 2020, 42(05): 334-342. |
[5] | Liuqing Ma, Pengfei Ma, Dezhu Li. The first complete plastid genome of Burmannia disticha L. from the mycoheterotrophic monocot family Burmanniaceae [J]. Plant Diversity, 2018, 40(05): 232-237. |
[6] | Jiaojun Yu, Chaobo Wang, Xun Gong. Degeneration of photosynthetic capacity in mixotrophic plants, Chimaphila japonica and Pyrola decorata (Ericaceae) [J]. Plant Diversity, 2017, 39(02): 80-88. |
[7] | SUN Xu-Dong. Molecular and Functional Comparisons of Reactive Burst Oxygen Species Gene Family in Arabidopsis [J]. Plant Diversity, 2015, 37(4): 463-471. |
[8] | GAO Cong-Cong-, NI Jun-, CHEN Mao-Sheng-, XU Zeng-Fu. Characterization of Genes Involved in Gibberellin Metabolism and Signaling Pathway in the Biofuel Plant Jatropha curcas [J]. Plant Diversity, 2015, 37(2): 157-167. |
[9] | TANG Xiao-Xin-, HUANG Shuang-Quan. Research Progress on Diversity and Variation in Flower Color [J]. Plant Diversity, 2012, 34(3): 239-247. |
[10] | LING Li-Zhen-, ZHANG Shu-Dong. Unraveling the Distribution and Evolution of miR156targeted SPLs in Plants by Phylogenetic Analysis [J]. Plant Diversity, 2012, 34(01): 33-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||